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We consider the persistence probability, the occupation-time distribution, and the distribution of the number
of zero crossings for discrete @quivalently discretely sampled Gaussian stationary proce@388$ of zero
mean. We first consider the Ornstein-Uhlenbeck process, finding expressions for the mean and variance of the
number of crossings and the “partial survival” probability. We then elaborate on the correlator expansion
developed in an earlier papg&. C. M. A. Ehrhardt and A. J. Bray, Phys. Rev. Lett. 88, 07060202] to
calculate discretely sampled persistence exponents of GSPs of known correlator by means of a series expansion
in the correlator. We apply this method to the procesBédt”= 5(t) with n=3, incorporating an extrapo-
lation of the series to the limit of continuous sampling. We then extend the correlator method to calculate the
occupation-time and crossing-number distributions, as well as their partial-survival distributions and the means
and variances of the occupation time and number of crossings. We apply these general methods to the
d"x/dt"= 7(t) processes fon=1 (random wall, n=2 (random accelerationand largem, and to simple
diffusion from random initial conditions in one to three dimensions. The results for discrete sampling are
extrapolated to the continuum limit where possible.
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[. INTRODUCTION intervals between zero crossings are statistically indepen-

dent, is surprisingly accurate in many cases. However, the
Stochastic processes driven by Gaussian white noise hayiA involves an uncontrolled approximation, which cannot

a wide range of applications in the physical sciences an#€ improved upon in general, and whose numerical accuracy
beyond, ranging from Brownian motion to options pricing_ is hard to estimate. Until now, the IIA has been the Ol’l|y

Here we focus on two basic properties of a stochastic Gaus§eneral analytical technique available. In the absence of ex-
ian time series: the number of crossings of the mean value Gict general results, calculations of probability distributions

the series, and the fraction of time for which the series i€Xist only for certain specific processes, although a short-
above its mean value. The former, termed the crossing nunjime expansion for a general process has been developed
ber, has long been of interest to engineers and mathema 22l. . Lo . . .
cians[1—3], and more recently to physicisié,5]. The latter Both continuous and intrinsically discrete time series can

’ ' ' rtl)_e studied. In this paper we consider discrete-time sampling

termed the occupation time, has also been studied by mat : ; . .
. . : of an underlying continuous Gaussian stationary process
ematicians for a long timgs—8] for both Gaussian and non- G . . .

: ) (GSP, X(T), with zero mean, unit variance, and known cor-
Gaussian stochastic processes and has recently seen a rev'&eefgtorC(T)z(X(T)X(O)) We sample this process at every
in the physics community in. the.conte_xt .Of npnequilibriumtime stepAT, and study.the discrete-time seri®g§iAT).
systems[9—1?i|. 'I_'he ocgupatlon-tlme d'St,”bUt'On fgr a stq- This is, of course, completely equivalent to studying a dis-
chastic process is also important due to its potential applicas ate process with the same correlat@§AT). In Refs.
tions in a variety of physical systems which include optical[23,24] we have studied the persistence of a discretely
imaging [14], analysis of the morphology of growing sur- sampled random walk and of a randomly accelerated par-
faces[15], analysis of temperature fluctuations in weathertjcle, both of which can be mapped to a GSP by a change of
records{16], in disordered systenfd 7], and also due to the variables. In Ref[25] we calculated, using a series expan-
connection between the occupation time in certain discretgjon in the correlato€(jAT), the persistence probability for
sequences and spin-glass modé]. an arbitrary discretely sampled GSP. By extrapolating to the

Of particular interest is a limiting case of these two prop-limit in which the time between samplings tends to zero, we
erties, namely, the probability, termed the persistence prolpptained results for several continuum processes. Thus the
ability [19], that the time series is always above its mearyesults developed for discretely sampled processes may, for
value up to timeT. The latter, for stationary Gaussian time sufficiently smooth processes, be extended to give results for
series, typically decays as expgT) for T large, with the  continuous-time processes.
exponentd in general taking a nontrivial value. For continu-  Before going further, we illustrate the main ideas by con-
ous processeX(T), the independent interval approximation sidering the simplest example of a stochastic process, the
(IIA) [20,21] may be used to calculate approximatéfgr  continuous-time random walk described by the Langevin
continuous samplingthe asymptotidi.e., largeT) forms of  equation
some of the probability distributions above. This approach,
which makes thégenerally invalid assumption that the time x=&(t), Q)
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where &£(t) is Gaussian white noise{£(t))=0, and C(10AT) andC(AT), i.e., tenth order. For the calculation
(&(t)&(t'))=2Ds(t—t"). The probability thatx>0 up to  of the persistence exponent we work to 14th order. The re-
time t decays as~? where the “persistence exponent” &  sults work well for C(jAT) small, i.e., the time between
=1/2. This process is not stationary since its correlator  samplings large compared to the correlation time of the sta-
. tionary process. For certain processes we are able to extrapo-
C(ty,to) =([x(ty) = () ][x(t2) = (x)])=2D min(ty,t5) late the series to the limihT—0, thus obtaining values of
2 the continuum exponents that compare favorably with those

does not depend only on the time differerjte—t,|. Note predicted by the IIA when measured against exact or numeri-
that, since the process is Gaussian, it is completely specifiet?! "esults. , , _
by its correlator and mean. We can map the random walk The layout of this paper is as follows. In the first part of

onto a stationary process by a change of variables: wi® PaperSecs. II-\f we consider the Ornstein-Uhlenbeck
change to logarithmic tim@& =Int, and to a normalized pro- Process introduced above, this being perhaps the simplest of
cessX(T) via GSPs. By extending the “matrix method” developed in Ref.

[23] we find the mean and variance of the distribution of zero

X(t)— (x(1)) crossings as a perturbation expansion to high accuracy. We
X(T)= , 3 also use another method to find the same results. The case of
V(X() %) —(x(1))* an unstable potentigbbtained by changing the sign of the
o ) drift term) is also considered. We extend the concept of par-
obtaining the equation tial survival[4] to discrete sampling, calculatirfg,(p), the
probability of surviving ton samplings if each detected zero
d_X: -~ £X+ (T) 4) crossing is survived with probabilitp. The results of this
daT 2 KARE section also provide an independent check of the correlator
method in Secs. VIII, IX, and X.
where 7(T) is again a Gaussian white noise, aX(r) has In the second part of this pap&éBecs. VI-XI) we apply
zero mean. The proce¥gT) is the Ornstein-Uhlenbeck pro- and extend the correlator expansion method of calculating
cess. It is stationary, with correlator the persistence exponents, occupation-time distribution, and

crossing distribution of an arbitrary discretely sampled GSP.
C(Ty,To)=(X(TP)X(T,))=exp —|T1—T,|/2). (5) The general method is then applied to some specific ex-
amples of interest, and the results extrapolated to the limit of

An equivalent mapping can be made for any nonstationaryontinuum sampling where possible.
Gaussian processes for which the correlator has the form |n Sec. Vi we introduce the correlator expansion first de-

C(ty,t) =t7g(t1/ty). Thus although here we only attempt yeloped to 14th order in Ref25] as a method of calculating

to analyze stationary processes, the results are more widelliscretely sampled persistence exponents. We explain this
applicable. Note that the exponential decay, ex), is  technique more fully including the extrapolation to the con-
equivalent to the power-law decay’, hence the terminol- tinuum limit using constrained Pad@proximants, which al-
ogy “persistence exponent” foé. lows rather accurate calculation of the standard persistence

The occupation time is the numberof positive (say) exponents. In Ref25] this technique was applied to the case
values obtained from the measurements of(T). LetR,s  of the random acceleration process and also to diffusion from
be the probability distribution of for givenn andr=s/n be  random initial conditions in one to three dimensions. Here
the fraction of measurements that are positive. In the limitwe also apply it to the class of processd/dt"= 7(t)
n—, s—o, with r=s/n fixed, R, s has the asymptotic where(t) is Gaussian white noise. The=1,2 cases are the
form R, s~[p(r)]"=exd—6p(r)T], where T=nAT and random walk and random acceleration problems already
Op(r)=—In[p(r)VAT. Here 65(1)=65(0) (all or none of studied. Here we calculate the persistence exponents for
the measurements positjvis the usual discrete persistence larger values ofi and show numerically that,— 6., 1/n for
exponent introduced in Ref23]. In a similar way we can n large. The results are compared to the predictions of the
defineP, ., to be the probability of observingn zero cross- 1A,
ings inn measurements. If now=m/n and we take the limit In Secs. VIl and VIII we extend the correlator expansion
n—o, m—», holding r= fixed, we find P, ,~[p(r)]" to calculate the occupation-time distributid®y, s, this being
=exd —6p(r)T]. Here 65(0) (no crossingscorresponds to the probability ofs positive measurements insamplings, to
the usual discrete persistence. Although we use the santenth order in the correlator. This gives, in particular, the
symbolsp(r) and 6y(r) for the occupation-time and cross- variance of the occupation-time distribution which we calcu-
ing problems, it should be clear from the context which prob-late in a more straightforward way as a check. We define a
lem we are referring to. partial-survival occupation probability?,(p), as the prob-

In this paper we extend the technique of RE#5] to  ability of surviving ton samplings if each positive sampling
calculate the exponent,(r), or equivalently the functions is survived with probabilityp. This is also the generating
p(r), for the occupation-time distribution and the distribu- function for R, . We find P,(p) to 14th order in the cor-
tion of crossings for arbitrary discrete or discretely sampledelator. We apply the results to the following five GSPs: the
Gaussian stationary processes. The technique gives the exgandom walk, where the results of Secs. II-V are used as a
nents as a series expansion in the correla@{jAT) up to  check of the method; the random acceleration problem; and
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diffusion from random initial conditions in one, two, and (Xn>=X0e‘“”AT=XOa”, (8)
three dimensions. Extrapolations to the continuum are in-
cluded. where a=e #AT. Similarly one finds that the correlation

In Secs. IX, X, and XI we further extend the correlator function is given by
expansion to calculat®, ,, the probability ofm detected
crossings im samplings. This is found to tenth order in the ([Xn= (Xa) T Xm= (Xm) 1y =D (@™ —a""m),  (9)
correlator and also enables us to calculate the partial-survival
probability and the moments of the crossing distribution. Wewhere D’=D/u. Thus in the stationary state—c, m
apply the result to the five GSPs of Sec. VII, and also to the~ Wwith n—m fixed, this process has mean zero and a
d"x/dt"= 7(t) processes fon>2 and to an intrinsically dis- correlatorC(Ty,T,)=(X(T1)X(T)) given by
crete process for which the exact results are kn@SjnEx- e Toe T
trapolations to the continuum are included and we compare C(T1,To)=C(|T,~Ty)=D"e #2" 1l (10)
continuum results with the IIA and also, for the random ac-
celeration partial-survival problem and the intrinsically dis-
crete process, to the exact solutions. In Sec. X we show the . , > i
result for the mean number of detected crossings. We als§'@n9es signm times within n discrete steps. Note that

derive the variance as a series expansion in the correlator, thge Probability P, , of observingm sign changes im
coefficients of which agree with those of Sec. IX. We con-Measurementéas defined in the introductiorcan be sim-

clude with a brief summary of the results. plymobtained from Qn(m,X) via the relation, P, n

In the first part of this papetSecs. -\ we will study ~ =J ==Qn(M.X)po(X)dX wherepo(X) is the initial distribu-
the detected crossings of the Ornstein-Uhlenbeck procesdon of X which we will take as the stationary distribution of
Besides being of interest in its own right, this will illustrate X- One can write down a recursion relation fQr,(m,X),
some of the methods used later and also provide sever¥plid for X>0, by noting that at the first step either the
checks on the correlator expansion of Secs. VI-XII. FurtherProcess changes sign or it does not.
more, here we are able to calculate probability distributions .
s_tarting at a certain posiftiob;(m _rather than just the long- Qn+1(mrx):j Qu(M,Y)G(Y,AT|X,00dY
time or stationary state distributions. 0

In the second part of this pap&Becs.VI-XI) we present o
our ulsg.of the correlator expansion._The correla_tor expansion + f Qu(m—1,Y)G(Y,AT|X,0dY,
was initially used to calculate the discrete persistence expo- —
nent of an arbitrary GSP and also, through extrapolation to
the continuum, the continuum persistence expori@si.
Here we WI|| gxtend the me_th(_)d to calculate the OCCUpat'O”WhereG(Y,AﬂX,O) is the probability of going fronX to Y
time distribution and the distribution of crossings. As these, ; ;

. . . . . n a timeAT, given by

calculations will require some explanation, we take this op-
portunity to describe the correlator expansion in full.

Let Q,(m,X) be the probability that starting & at T
0, the processwhen sampled only at the discrete pojnts

(11)

G(Y.ATIX0) = o T¥-a020' 1)
[l ) \/,—_2—
Il. DISCRETE BACKWARD FOKKER-PLANCK 2wD’(1-a%) (12)
EQUATION
Consider the stationary Gaussian Markov process evolWsing_the rescaled variables=X/yD'(1—a%) and 'y
ing via the Langevin equation, =Y/{D'(1-a%), and making use of the symmetgy,(m,
—X)=Q,(m,x) we get
dx X+ n(T) (6) 1
—— —M n y o] B B 2
dT m,x =—f m,y)e”y=a)2
Qn+l( ) \/E 0 [Qn( y)
where 7(T) is a white noise with mean zero and correlator, +Qn(m—1,y)e‘(y+ax)2’2]dy. (13)

(n(T)n(T"))=2DS(T—T'). This is the Ornstein-
Uhlenbeck process whose persistence exponent for disCrefgyte that form=0 this reduces to the persistence problem
sampling was calculated in Re¢23]. studied in Ref[23], whilst for m=n we have the alternating
Integrating Eq/(6), we get persistence problef23].
. We define the generating function, F,(p,X)
X(T):XOG—MT+8—MTJ 7(Ty)e TdT,, ) _=E“m:0Qn_(m,x)pm. The gen_eratlng funct!on has a physical
0 interpretation. If one considers that with every detected
change of sign a particle survives with probabilitypartial
whereXo=X(T=0). Let T=nAT. Then the mean position survival, thenF,(p,X) is precisely the survival probability
(X,) aftern steps starting initially aX, is given from Eq(7)  of the particle. Note that fgp=1 this probability is 1 whilst
by for p=0 we recover the usual discrete persistence.
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Multiplying Eqg. (13) by p™ and summing ovem we get  become statistically independent. Note thatdor1, there is
no stationary distribution as this corresponds to an unstable
1 o potential.
Fn+1(P7X):E Jo Fa(p,y) Note, however, that to computg,=(m(m—1)), by a
similar method, we need to know the full functid(x),
X[e—(y—ax)2/2+ pe—(y+ax)2/2]dy_ (14) that is, we need to solve the full integral equatid®). In-
deed fora<1, if we choose to average over the stationary
Let En(X) == 5-omQn(m,x) =dF,(p,x)/dp|,-; denote distribution, po(X) = (1/y27D")e ¥’ then by multiply-
the expected number of sign changes up gteps starting at ing both sides of Eq(16) by po(X) and integrating ovex
x at T=0. Taking the derivative with respect poand putting  from —o to «, we get after straightforward algebra
p=1 in Eq.(14), it follows thatE,(x) satisfies the recursion

relation
2(1-a?)
On+1=0nt
a

1 * 2 2
E X)= —— E ef(yfax) /2+ ef(y+ax) 12 d
n+l( ) \/E fo n(y)[ ] y )
-D'(1-a%)y?2, ay
1 ax X | Eny)e erfc N dy. (19
0
+5 erfc( —) , (15)

V2

where erfck) is the standard complimentary error function
and the recursion in Eq15) starts with the initial condition
Eo(x)=0. Also note thatG,(x)==,-om(m—1)Q,(m,X)

Hence the variance of the number of crossing$=(m?),,
—(m)2, is given by

=d?F,(p,x)/dp?|,, satisfies the recursion, o2=g,+nh—n2\2, (20)
Gni1(X)= L wan(y)[e‘(y—aX)2’2+ e~ (rad’2)qy whereg, is given by the solution of the recursion equation
V2w Jo (19) and A\=1% —(1/m)sin"}@). To determineg, from Eq.

(19), we need to know the full functio&,(x).
+ i fxdy En(y)e—(y+ax)2/2 (16) In the following section, we show that there is an alterna-
V2 Jo ’ tive way to derive an expression f&,(x) without solving
the integral equatioil5).
with the initial condition Go(x)=0, and whereE,(x) is
given by the solution of Eq(15). In order to calculate the

average number of crossings and the variance around this IIl. ALTERNATIVE DERIVATION OF  E(X)
average, we need to solve the two integral equati@Bsand An alternative derivation oE,(X) can be obtained by
(16). noting the evident relation,

If we can obtain the solution d&,(x) from Eq.(15), then
we need to average over the distribution of the initial posi- )
tion x to obtain(my,=f* E,(X)po(X)dX wherepo(X) is  En+1(X) —En(X)=z[1—(sgnXn)sgnXn+1))1=(8(Xn))
the initial distribution of the position X and x

+{O(X —2(0(X,) 0(X ,

=X/\{D’'(1-a?). Fora<1, i.e., u>0, if we choosey(X) (00Xn+1)) = 2(0(Xn) 6(Xn+ 1))
to be the stationary distribution of the procegs(X) (21)
= (127D ")e X0’ which corresponds to waiting an in-
finitely large number of steps before starting the measurewhereg(x) is the standard theta function. Noting théafand
ments, then(m), can be computed exactly from E€L5). X, ., are Gaussian variables, we can compute the right-hand
Multiplying Eg. (15) by thispy(X) and integrating oveXwe  side of Eq.(21) exactly. For this we first need the joint dis-

get tribution P[X,,,X,+1] of X, and X,,;; which involves the
correlation matrixC,, ., given by
(Mpe1=(M)p+\, (17
where\ = — (1/7)sin (a). Using(m),=0, we get exactly [ 1-a*"  a(1-a’
Chn+1=D _a2n _a2n+2 |0
a(l—a") 1-a
(my,=n\, (18

which is the random walk case of the general resulwhere we have used E) for the matrix elements. Using
(m),/n=1/2— (1/7)sin 'C(AT) [26]. Note that forAT—0 this joint distribution and carrying out the Gaussian integra-
this reduces to Rice’s formula, while f&T—oo it reduces tions, we get after lengthy but straightforward algebra the
to n/2 as expected since the valuesxot the discrete points final expression of the right-hand side of Eg1) as
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FIG. 1. Plot ofu(x) =E,(x) —n\ for a=1/2 andn=1000, cal-
culated using Eq(23). u(x) is symmetric abouk=0. Also shown
is u(x) for a=1/2 derived using the matrix meth¢&q. (30)], the
two curves are indistinguishable.

En+1(X) = En(X)
1 1
= E erfa —A,X) + 5 erfo —Ap41X)

o0

. (22

where A,=a"/\/2D’(1—a”"). Changing to rescaled vari-
able x=X/\/D’(1—a? and using the initial condition
Eo(x)=0, we get from Eq(22),

E (%) 1 El . a™ [1-a?
X)=— erfcf — —
3 2 M=0 V2 Vi1-—a2m
a.m-%-lX 1_a2
+erfc| — \/5 YT
2 )

_ dye7y2
\/; —aM*L(x/y2)\V(1—a)/(1—a2M+ ?)

f \/l a2m+2\/1_a2 am
Xerfc| — —X
1 a2m\/§

1_a2m
2|

—-a (23

l1—a

This can be solved numerically. Fig. 1 shows(x)
—nA for a=1/2 andn=1000.
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sign changes for the two cases: stable potentiat0, i.e.,
0<a<1 and unstable potentigh<O, i.e.,a>1.

IV. ASYMPTOTICS OF THE MEAN AND VARIANCE
OF THE NUMBER OF SIGN CHANGES

A. Stable potential: u>0

In this casea=e #*T<1 and alsoD’>0. Thus asn
—w, A,=a"/\2D’(1-a?)—0. Then from Eq.(22), we
find E,.1(X) —En(X)—\ with A= 3 —(1/r)sin” Y(a) indi-
cating that in then— oo limit, E,(X) becomes independent of
X (as long asx<a") and to leading order for large,

E,(X)=nN\, (24

in agreement with Eq18). Indeed the expression f&,,(x)
in Eq. (23) is a solution of the integral equatiod5). For
finite n, one can writeE,(x)=nA +u,(x). An explicit ex-
pression fou,(x) can be obtained from that &,(x) in Eq.
(23). Using the explicit value ol and after a few steps of
algebra we get

1"
Un(0="> E: Sm(X),
o=eri a™ [ 1-a?
s(X)=erfc| — —

m \/E l_aZm
. f( am™t1x 1-a? ) - 2
erfc] — -2+ —
\/5 1_a2m+2 \/;

xfmdye*yzerfc _y —i
0 1-a’ \/;

* 2
xf dy e
7(Xam+1/ Q) /(liaZm)/(lfaZm-#Z)

( \/1 a2m+2\/1—a2 am
X erfc| — —X
1 a2m\/§

l_aZm
1-a2”)

(25

Besides, usings,(X)=n\+u,(x) in the integral equation
(15), we find thatu,(x) also satisfies the following integral
equation:

wun(y)[e—(y—ax)2/2+ e—(y+ax)2/2]dy

_ 1
Un+1(X)—Ef0

+1 . ax \
— erc| —= | — A,
2 V2

with A= — (1/7)sin %(a).

(26)

In the following section we discuss the exact asymptotic Now the leading term irE,(x) is n\ and is independent
properties of the mean and the variance of the number obf x as long asx<a™". This upper cutoff tends te asn

016106-5



EHRHARDT, MAJUMDAR, AND BRAY

—oo sincea<l. Thex dependence dE,(x) appears only in
the subleading term,(x). Now, asn—o, u,(x) tends to a
stationary solution independent ofas long ax<a™") and
is given by the fixed point solution(x) of the integral equa-
tion (26),

U(X): u(y)[ef(yfax)2/2+ e*(y+ax)2/2]dy

7=h

1 ax
+ E erfc( —) —\. (27)

V2

We can findu,(x) perturbatively by expanding thaxy
term in the exponentials in E§27) to get

1 * (ax)me—(ax)Z/ZJ»Oc 5
U(X)= — —— | u(y)e¥?2y™d
(00=—== m=0(§m‘,even) — Uy y™dy
+ ! fi ( ax N (28
—erfcl —| —
V2
Defining
- 112y ,
l,= Jo u(x)We‘X 24 x (29
gives
2 * amlzxme—(ax)2/2
ux)=\/— —_—
( ) \[ﬂ-m=0(§m:even) \/H m
1 ax
+ > erfc E —\. (30)

Multiplying both sides bya'’?

over positivex gives

xle ™2/ \IT and integrating

[’

||:m:0(meven) Mimlm+J;, (31)

where

" 1 2a (I+m+1)/2
V2ma\ 1+a?

xm+lT—\/_r:ll)/2] m even, 0 otherwise, (32)
J,=% :dxx'e"‘z’z %erfc(%)—)\ . (33

Thus
I=(1-M)1J. (34)

PHYSICAL REVIEW E 69, 016106 (2004

This perturbative expansion ia is the matrix method. Al-
thoughM,,, is an infinite array, the elements decrease rapidly
with increasingl and m since each increment df and m
gives a higher power ad (a<1). We can solve this numeri-
cally. Figure 1 showsu(x) for a=1/2. Alternatively, using
MATHEMATICA, we can solve Eq(31) iteratively. At each
iteration we obtain a newwhose elements are a seriesan
up to our required order. Convergence is rapid. This can only
be done with a smaller matrix than the numerical method,
but gives a result for general Note that we could equiva-
lently have done this perturbative expansion on 8¢) to
getE(x) and subtracted the\.

Alternatively, we can directly take the— o limit of the
expression ofi,(x) in Eq. (25) to get

o

1
wm=5§3%ux

m=0

(39

wheresy,(x) is given by Eq.(25). This has been done nu-
merically (for n large but finite¢ and found to agree with the
matrix method.

Let us first compute the asymptotic properties of the fixed
point solutionu(x). Consider first the limitx—0. Putting
x=0 in Eq. (25 and carrying out the integrations we get,

after some algebra,
1-a? -
3\ [ gemez (17V17a™h
(36)

For example, fora=1/2, we getu(0)=0.191603%...
which agrees very well with the result obtained from the
direct numerical integration of E¢26) in the largen limit.
Consider now the other limix—o. By making the change
of variable y —ax= \/2z in the integral equatiof27), we get

to leading order for larg& (where the lower limit of the first
integration tends to-),

u(O):i > sint

a7 m=0

u(x)~u(ax)—A\. (37)
The solution of this equation is given by
N
u(x)~—Inx. (39)

Ina

Note that\/Ina<0 for a<1 and hencai(x) goes to—o°
logarithmically asx—oe. This is consistent with the fact that
E, (X)~nA+\(In¥Ina)~(\In a)in(xa")—0 asx—a " as it
should evidently from the direct expressionBf(x) in Eq.
(23).

In Fig. 1, we plotu(x) obtained from numerically evalu-
ating the sum in Eq(25) and also the result obtained using
the matrix method. The results agree to within numerical
precision. Also, they agree with the asymptotic results in the
large and smalk limits. Note that thex—oo limit was not
attainable by the matrix or summation methods because in
both cases the evaluation is done to a finite order or fimite
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FIG. 2. Plot ofo?/n againsta=e ™ #AT with D'=1. Note that
aﬁ/n—m for a—1, and the series has not converged for laage
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0.75

X 05

0.25

FIG. 3. The expected number of detected crosskgg for the
casea=2 (unstable potential Shown are the results of the matrix
method and also numerical evaluation of E4f), which are indis-

Once we knowu,(x), then we can determine the variance tinguishable.

o2 from Eq. (20). SubstitutingE,(x)=n\+u,(x) in Eq.
(190 and using the fact that,(x) tends to the fixed point
solutionu,(x)—u(x) for largen, we get

gn+1:gn+2n)\2+:8a (39
where
/2(1—a2)f°° /(1 222 ay
=\/—| u(y)e D'V 2arfc| — |dy.
B - . (y) 2 y
(40

One can easily solve the recursion equaii®®) exactly us-
ing go=0 and we get

gr=A2n%+(B—A?)n, (41)

whereg is given by Eq(40). Substituting this expression for
g, in Eq. (20), we finally get the required exact expression of

the variance for large,

o2=(A—\2+p)n. (42

Thus the variance can be exactly determined once we kno

the functionu(x) and therebyB from Eq. (40). Using the
exact expression ofi(x) from Eq. (35), we have, in prin-
ciple, an exact result fg8 and hence forrﬁ. Substituting the
u(x) derived from the matrix method into E¢40) gives B
and hences?. o?/n is plotted as a function oé for D’
=1 in Fig. 2.

B. Unstable potential: u<<O

In the preceding subsection, we have seen thatfod,
the functionE,(x) behaves asymptotically for large as

E,(X)=nA+u(x) whereu(x) is given either by the exact
expression in Eq(35) or equivalently by the solution of the
integral equation(27). For the unstable potentiad<O, i.e.,
a>1, the number of crossings will be finite and EQ(x)
approaches a steady statenas . This is most easily seen
from Eq. (22). For a>1, A,=a"/yJ2D’(1—-a%)—x» asn
—oo (note thatD’=D/u<0). Taking this limit in Eq.(22),
we see thak,, 1(xX) —E,(x)—0 for all x asn— o, indicat-
ing E,(X)—E(X) asn—oo. This steady stat&(x) is given
by the fixed point solution of the integral equati@b) with
a>1,

E E(y)[e—(y—ax)z/zJr e—(y+ax)2/2]dy

1 ax
+—erfc( —) .
2

V2

(43

E(x) can be found using the matrix method in the same way
as before but withJ; replaced byJ; where

W

al2 (o

-,

1 ax
dxx'e‘lezgerfc( —) .

V2

J/ (44)

E(x) is shown in Fig. 3 for the casa=2.
Alternatively, E(x) is also given by taking the— o limit
of the exact expression in E3) (with a>1),
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o)

) 1 S | ert a™x 1_a2)+ . a™lx [ 1-a? )
X)=— erfcf ——=\/——=| terfc| —
2 m=0 \/5 1_a2m \/E 1_a2m+2
2 S g _y2 . \/1_a2m+2\/ 1 a2 am 1_a2m (45)
- — e Verfg — —Xx—a .
\/; _am+1(X/V§) (l_aZm)/(l_a2m+2) y l_a2 1_a2m \/E l_a2 y
|
This is shown in Fig. 3. andG(,(a)=Gn(—a). In fact, G, is the matrix used for

We have calculated the variance of the number of detectegalculating the discrete persistence expoii2, while Gl
crossings and also the expected number of detected crossingises alternating persistence. This is to be expected, since for
starting at positiorx. These calculations have been carriedp=0 we just have ordinary persistence and forl we
out by two independent methods and the results agree witiyould expect the paths which cross between every sampling
each other. (alternating persisteng¢o dominate. In the same way, one

may calculatepy(a) for the discretely sampled random ac-
V. PARTIAL SURVIVAL celeration problem studied in Ref24], whose stationary

The partial-survival probability-,(p,x), is the probabil- process is given by

ity of surviving beyond thenth sampling having started at
if each detected crossing of the origin is survived with prob-
ability p. Thus,

X+ (a+ B)X+aBX=n(T), (52)

where »(T) is Gaussian white noise with mean zero and
- correlator {p(T)7(T"))=2aB(a+B)S(T—T'), and «
Fa(p,X)= > Qu(m,x)p™ (46)  =1/2, p=3/2 for the random acceleration problem, although
m=0 other values ofx, B can be considered. We get

and, as stated beforg,,(p,x) is the generating function for *

Qn(m,x). F,(p,x) satisfies the integral equatidi4). We pp()1j;= > (Hijii + PH{j) s (53
expect that for largen, F,(p,x)=[py(a)]"F(x) where kI=0
pp(a)=e" “PAT and 4(p) is the discrete persistence expo-
nent. Substituting this into Eq14), we get an eigenvalue
equation forF(x),

whereH;; andl;; are given in Ref[24]. Again, H;j is the
matrix used to find the discrete persistence exponent and
Hi’jk|(a)= Hijx (—a) gives the alternating persistence expo-
1 (= , , nent. We findp,(a) numerically and also as a power series
pp(a)F(x)= —f F(y)[e V3024 pe~ (VT a0 2]dy, in a for the two processes given above. The results are shown
V2mJo in Figs. 4 and 5. Also the eigenfunctioR(x) for the
(47) Ornstein-Uhlenbeck Process may be found by substituting
the eigenvector corresponding to the largest eigenvalue into

The largest eigenvalug,(a) and the corresponding eigen- (Eq. (48). Results fora= 0.5 with p=0, 0.5, 1 are shown in
ig. 6.

function can then be determined either by the matrix metho
or by the variational method as in our previous paj&s.

Using the matrix method, we get So far we have found the mean and variance and also the

partial-survival probability for the Ornstein-Uhlenbeck pro-

a2 *  am cess, a simple Gaussian Markov problem. We did this by
pp(a)F(x)= > —X"1+(—=1)™p]lm, using the propagatoP(Y,AT|X,0) [Eqg. (12)]. We also

V2@ =0 m! showed how the partial-survival probability of other GSPs of

(48 known propagator can be found by using the perturbative

" matrix method, and we illustrated this for the random accel-

_ , eration problem. However, the methods used become pro-

Pp(a)"—go (Cim*+PGim)Im, (49) gressively harder as the number of variables in the problem

increases. The Ornstein-Uhlenbeck process had only the po-
where sition X, the random acceleration problem hxdand V,
while the persistence problem for the diffusion equation can-
am [ Sy not be expressed in terms of a propagator with a finite num-
Im=— dy y"e V4R (y), (50)  per of variables. In the remainder of this paper we will use a
m!Jo )
different approach based on the correlator of the process

(I+m+1)/2 C(T). This removes the difficulties mentioned above and
G _Lam 2 w can, furthermore, be applied to any GSP of known correlator.
ENEY 1+a? [tm! ’ The results for low-dimensional problems obtained above are

(51 slightly more accurate than those given by the correlator
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0.9 . 5r i
4 L ]
0.8 B
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0.7 B
/ 2t 1
0.6 E
4 ]
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exp(-pAT)

FIG. 6. The eigenfunctionf(x) of Eq. (47) for a=0.5 with
FIG. 4. Plot of the random walk discrete persistence eigenvalug =1 (lowest curvg, p=0.5 (middle curvé, andp=0 (top curve.
pp(@) for partial survival againsa=e™#AT for values of the sur- The eigenfunctions are defined only up to an arbitrary prefactor
vival probability p from 0 (normal discrete persistence, lowest which has been chosen here so thé0)=1. Since the eigenfunc-
curve to 1[guaranteed to survive gg(a)=1, top curvg in steps  tions are series i, for largex they do not converge to the correct
of 0.1. The curves are the raw seriesaito ordera®. Note that for  solution. This can be clearly seen for the:1 case where, since the

all the CUrVeSpp—)]. for a—1 since a walker will aIWayS survive walker is guaranteed to SUrVng,(X) iS a constant everywhere’
for atimeAT whenAT—0. Since the series iaare finite, they do  whereas the plot is not constant fae10. For thep=0 case,

not quite converge to 1 in this limit F(x)~x" with v=Inp/In a.

method because they can be calculated to higher order. They

n
can be used as powerful checks of the accuracy of the cor- B .
relator method. Pn= < iﬂl ®[X(IAT)]> : (54)
VI. AN INTRODUCTION TO THE CORRELATOR where® (X) is the Heaviside step function and the expecta-
EXPANSION tion value is taken in the stationary state. One may write

O[X(iIAT)]=(1+0y)/2, whereo;=sgri X(iAT)], and ex-

The expansion starts from the following identity fBy,, pand the product to give

the probability of no detected crossingsrirsamplings:

1 T T T T 1
Pn:;

n n
l+ 2A<Ui0-j>+ 2 <Ui0'jUkO'|>+"'
1=i<j 1=i<j<k<l
(55

0.9 _
where the terms with odd numbers efs vanish since the
process is symmetric undet— —X (and therefore under

0.8 . o——o0). To evaluate the terms we use the representation
= 1 *© dZ|Z|eiZ|XI
o= fllm - - (56)
0.7 1 iTen0d —=(z,—i€)(z+i€)
Carrying out the required averages of the Gaussian process
0.6 . gives the correlation functions appearing in E8p):
m
dz 1
1 1 1 1 <0-| <0 >: H ( : )ex%_zacaﬁzﬁ)y

05 0.2 0.4 0.6 0.8 1 ' " =1 \imz 2

exp(-AT/2) (57)

FIG. 5. Plot of the random acceleration discrete persistence elVhereC,z=(X[aATIX[ BAT])=C(|a—B|AT), and there
genvaluep,(a) for partial survival againsa=e~“T2 for values of IS an implied summation over and 3 from 1 tom. Notice

p from O (normal discrete persistence, lowest cort@ 1 [guaran-  that we have already taken the lingt-0 in Eq. (57), with
teed to survive s@;(a)=1, top curvé in steps of 0.1. The curves the understanding that all integrals are now principal part
are Padepproximants of the raw series into ordera®®. integrals.
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o oo A o e ST s e Tr e S e s » order k, we need only evaluate correlations functions with
separations up tokAT.

FIG. 7. All topologically distinct contributions tdoojoyay) To illustrate this approach, we show in Fig. 7 all the to-
up to fourth order. Note that the first, fifth, and sixth diagrams are oloaicallv distinct diagrams contributing tar: o u
disconnected, while the othefincluding diagrams 2 and)3are pologically 9 g t@i0j0y0) Up

connecteddue to the constraint that the order of the poinfsk,| fgttfigzrtcviﬁrgsré;g:ngrztr;;%?m’ when ehumerated o_n .the
must be unchanged : ; greater, while the remaining
five will be fourth order or greater.
For them=2 case this integral can be done exactly by . In Fig. 8 are shown the enumera}tions of tvyo of the basic
diagrams of Fig. 7 together with their embedding facttine

differentiating with respect t€,, and doing the two simple . )
Gaussian integrals before integrating again with respect tgumber of ways they can be placed on the lajtiap to fifth

. 4 - - order.
fclz «(al:nd_wgpo;:hg the bourr: dary ﬁokndmon ﬂ(at'llg'2>_0 Thus the calculation oP,, proceeds in three stages:
or Cy,=0. This gives the well-known resuloy ) (1) All the basic diagrams up to the required order are

= (2/m)sin'C,,. Form=4 this method becomes nontrivial. found, for example, the 4-vertex diagrams shown in Fig. 7.
Instead, we choose to expand the exponential in(&g.in (2) The basic diagrams are enumerated on the lattice, in-
powers ofC,s (a# B) leaving the terms withe=p unex-  ¢yding the “stretched” diagrams, as shown in Fig. 8.
panded(noting thatC,,=1). This allows us to evaluate (3) The appropriate factors are assigned to each diagram.
each correlation function of the’s up to a given order in The total number of enumerated diagrams increases
the correlator<,, . By symmetry, only terms which gener- roughly by a factor of 2 for each extra order. At 14th order

?t? ?dd powers of every, in thﬁl gx;t)r:]in_smt)n of tzeti)(ponﬁ% there are 12434 diagrams. Memory and, to a lesser extent,
lal (to give even powers overall in the integrand, throug ime constraints limited us to this order. There is, however,

factors 1#;) give a nonzero integral. This suggests a simple - . : :
diagrammatic representation for the terms in E&F), as no new difficulty in going to higher order. The process was

given by Eq.(57). On a one-dimensional lattice containing amoma.ted.USing"ATHEMAT'CA' For calculatﬁnan, fipding
sites, with lattice spacind T, draw m vertices at the loca- the basic d_|agrams was the most chgllenglng task in terms of
tionsl,l,, ... |l,. Connect the vertices by lines in all pos- computer time aT‘d memory. Tp achieve 14th order we used
sible ways(summing over these different possibilitiezsub- the fa_ct_ that all disconnected dlagrams can be constructed by
ject to the constraint that each vertex is connected to an ody. mbining two or more connect_ed d'agra”.‘S- At 14th order,
number of lines. Associate a factg27(p—2)!! (coming jagrams with 12 or more vertices are dlscolnnected, thus
from evaluating the Gaussian integpalgith each vertex of only connected diagrams with up to 10 vertices need be

orderp, a factor (- C,, )'/r! with ther lines connecting site found. F_urthermore, d'agfams containing two or more Ilne_s
i'j connecting the same points can be constructed from dia-

| to sitel;, and an overall factorsti) ~™ with the diagram.  grams with only 0 or 1 lines connecting points by adding
This suffices to evaluate the integrals in E5j7). Evaluating  pairs of lines. The procedure adopted was as follows.

the summations in Eq(S5) involves enumerating all con- * Eor the 2 to 10-vertex diagrams all possible diagrams up
flguratlon_s of the vert!ces on the lattice for a given ord_ermgt0 14th order with only 0 or 1 lines connecting poiarsd all

of the points, and noting that the fact@r,, associated with  yertices odd are constructed. To these diagrams pairs of lines
a given line is equal taC(qAT), whereq=|l;—I;| is the are added in all possible ways up to 14th order. The con-
length of the line in units oAT. nected diagrams are then selected and stored.

We choose to defin€C(AT) as first order small and For 2- to 28-vertex diagrams all diagrams are constructed
C(qAT) asqth order small. Although somewhat arbitrary, by combining the connected diagrams found above, for ex-
this is a largeAT expansion and most processes of physicabmple, the 6-vertex diagrams are formed from three 2-vertex
interest have correlatolS(gAT) which decrease exponen- diagrams, one 2-vertex diagram, one 4-vertex diagram, and
tially for large argument, so our definition is consistent forone 6-vertex diagranwith the appropriate permutation fac-
large AT. For the random walk, the correlator S(T) tors arising from the various ways of ordering the connected
=e 12 and the definition is always valid. For other pro- diagrams. For large vertex numbers, this produces signifi-
cesses it is often possible to reexpand the correlator in ternant savings over naively trying all diagrartsince the vast
of an exponential and work to a given order practice we majority of diagrams do not satisfy the odd-vertex criteyion
can go up to 14th ordem this exponential. This can be done In this way, up to ordek we need only find all connected
for, e.g., the random acceleration problem. The order of aliagrams with up ta@ vertices, wherej=(2k+4)/3 is even
diagram is then equal to the total length of its lin@sea- and we round down, whilst the diagrams go up to\&rti-
sured in units of the lattice spacinT). Thus to a given ces.

(n-2)n=3) (n-3)(n—4)
e e + e e——e

+ @3He—ea e + nhHe—e _ »—o—9 + nHe——a_ 9o

FIG. 8. Enumeration of two of the diagrams from Fig. 7, with embedding factors, up to fifth order. Large dots are vertices, small dots
intermediate sites. The final diagram here gives a contribution4) (2/72)C(2AT)C(AT)® to P,,.
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Having foundP,,, we findp(=e~ AT using the fact that
P,~p" for large n. Thus p is formally obtained asp
=Iimn%}Pn+1/Pn. However, since we started in the sta-

tionary state, the relatiop=P,,, /P, in fact holds for alln

larger than the length of the longest diagram. Expanding the

expression foP,,, 1 /P, as a Taylor series up to 14th order in
a=e 272 gives us a series expansion fofa) aboutAT
= (a=0). For the random walk, for exampl&(AT)

=e AT2=3 for w = 1/2, substituting this into our expression
for p gives us a series up to 14th orderanvhose coeffi-
cients agree with those of the matrix meth@d within the
numerical error of the matrix methnad

For the usual random acceleration proble@(AT)
=(3e 4T2—e 3AT2)p=(3a—a®/2. For this case our
identification of C(14AT) as being of the same order as
C(AT)*does not hold for alAT. However, if we only keep
terms up tea'* our expansion will be exact up to order 14 in
a. Whenever possible, this is what we will always do. Note
that in this way we are now working strictly to 14th order,
even thoughC(jAT)#C(AT)!.

In Ref.[23] we introduced the concept of alternating per-
sistence, witrP’n* being the probability thaX; is positive for
oddi and negative for even(or vice versa We findp, by
noting that, whereas before we required,X,, ... X,
>0, we now requireX;,—X,,X3,— X4, ... X,>0. Thus
the calculation is as before except th&@(gAT)—
—C(qAT) for g odd. Making this minor change to the nor-
mal persistence result gives us the alternating persistence

Xi, X; will be used below to calculate the distribution of
crossings.
We have applied the correlator expansion to the rando

walk x= n(t) and random acceleration= 7(t) using the

PHYSICAL REVIEW E 69, 016106 (2004

TABLE I. Results for the continuum persistence expongfr
the random acceleration problem and the diffusion equation in one
to three dimensions. PatieR is the Padapproximant results with
one constraint, PA@ER has two constraints. Numeriddl3] and
IIA results are shown for comparison.

PaddCR PadaCR Numerical A
% 0.25065) 1/4 (exac)  0.2647
1D diff 0.1191) 0.12013) 0.1205@5) 0.1203
2D diff 0.1871) 0.1875%1) 0.1875%1) 0.1862
3D diff 0.24(3) 0.2371) 0.23821) 0.2358

For all these problems we define a discrete persistence
exponentfdp(a)= —Inp(a)/AT=Inp(a)/2Ina, and plotdy(a)
againsta for 0<a<1, i.e.,o=AT=0. Since we are plot-
ting finite series in powers d, they do not converge faa
—1. This problem is exacerbated by the Hlterm in the
definition of p(a), which caused(1) to blow up unless
p(1)=1. To makep and hencefp(a) more accurate foa
close to 1 we extrapolaté,(a) to the continuum. To do this
we use the technique of Padpproximants borrowed from
the field of series expansions for critical phenom¢ad).

The Padeapproximant involves replacing the 14th order se-
ries ina with a fraction whose numerator and denominator
are series ira. The sum of the order of these two series is 14
and the coefficients are chosen so that when the fraction is
expanded as a seriesarit is identical to the raw series. This

ex- .
ponent. This way of accounting for sign changes betweetﬁépprwch markedly improves the results foror example,

or the random walk, the Padgproximant of the 14th order
series appears to better the 25th order raw series obtained
from the matrix methodboth raw series agree, of course, up

"o 14th orde). However, in order to get accurate continuum

results ford we add 1 further term to the Pad@proximant

transformation to logarithmic time to generate the corre-(ejither numerator or denominatarhose coefficient is cho-
sponding stationary processes. Furthermore, we have studigdp so that the exact constrajptl)=1 is satisfied. This

diffusion from random initial conditions in one to three di-
mensionsg¢/dt=V?¢, where¢(x,t) is the diffusion field
and the initial conditiong(x,0) is delta-correlated Gaussian
noise. We consider the persistencegdofat a single site, for
example,(0,t). For this process the correlator is

C(T)=secl*(T/2), (58)

serves to give reasonably accurate estimates of the con-
tinuum persistence exponent. For example, for the random
acceleration problem we find=0.2506(5) from the Pade
approach, compared to the exact result of 1/4.

For certain sufficiently smooth processes the derivative of
Op(AT) at AT=0 is zero[24]. We can thus add a further
term to the Padapproximant to impose this constraint, and
markedly improve the accuracy of our estimate of the con-

whered is the space dimension. As for the random acceleratinuum ¢. The diffusion equation in all dimensions and the

tion, we define a=exp(—AT/2) for d=2 and a=exp

d"x/dt"= »(t) processes fon=3 are all suitable. Table |

(—AT/4) ford=1,3 and then expand the correlator in powersshows the continuum results for diffusion in one to three

of a. For d=1,2 the lowest power of is a! and so we
expand up ta'* whilst for d=3 the lowest power is® and

dimensions as reported in R¢R5], with numerical results
and also the singly constrained and IIA results for compari-

so we expand up ta*’. We also considered the processesson. Ford=1 the IIA is slightly better, but the correlator

d"x/dt"= 5(t) for n>3. In logarithmic time the correlators
are[20]

Cy(T)=(2—1n)e "%F(1,1-n;1+ne "), (59
where ,F, is the standard hypergeometric function. Tine
=1,2 cases are the random walk and random acceleratio

whilst the limit n— case reproduces the correlator for the
d=2 diffusion process mentioned aboj\#0].

expansion is more accurate fd=2, 3. Furthermore, we
obtain estimates of the errors and, by going to higher order
we may improve our results. Table Il shows the continuum
results for thed"x/dt"= 5(t) processes with @n<10. Fig-
ure 9 shows howd, varies withn. Notice in particular that
0,— 6.,>1/n for n>20, and tha®,, is identical to that of 2D
diffusion (since the correlators are identigal

And so, by the use of these two constraints we have been
able to extend a series expansion akbUit=« all the way to
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TABLE Il. Results for 6, againstn for smalln. The Padeap-  describing linear interface growth, whergx,t) is delta cor-

proximant correlator expansion with two constraints is shown alongelated in space and time. The normalized autocorrelation
with the independent interval approximation. The Peglmults are  function ofh(x,t) has, ford<z, the form
an average of suitable Padef order 14 to 10. Note that for=2

(the random acceleration problgnthe lIA gives #=0.2647 while C(T) =cosr(T/2)23— |sinf(T/2)|2ﬁ= 1—|T/2| 2By,
the analytical result is 1/4. Far—o (the diffusion equation the (61
Paderesult with two constraints is 0.187B, the numerical result is
0.187%1), and the lIA result is 0.1862. whereT=Int as usual3=(1/2)(1-d/z) andd is the spatial
dimension[28]. Since 8<1/2 this process will always be
n Pad@CR 1A “rough,” so extrapolation of the series to the continuum

limit is not possible. Second, the correlator may not be easily

3 0.220223) 0.22283 expandable in some suitable variable such atte’? used
4 0.209583) 0.21029 earlier. Another process, fractional Brownian motion, defined
5 0.204183) 0.20417 as a Gaussian procesqt) with stationary increments
6 0.200843) 0.20054 ([x(t)=x(t")]?)ec|[t—1'|?2, has normalized correlat§29]
7 0.198643) 0.19813
8 0.197073) 0.19642 1 T\ ¢
9 0.195893) 0.19514 C(T)=coshpT)— ~|2 Sin?‘( —) , (62)
10 0.194963) 0.19414 2 2

whereT=Int as usual. For generg there are two incom-

the AT— 0 limit. The ability to do this does however depend Mensurate variables™ #4T ande™*"%, making it difficult to

on the correlator. First, if the process is “rough,” i.e., 1 construct a controlied expansion. _

—C(T)«TA+ - - with 0<B8<2, so that the probability dis- Finally, when applying the two constraints to the three-
tribution of the timeT between two zero crossings behavesdimensional diffusion problem, we have been unable to nu-
asP,(T)=T+---, with a<0, then we have showf24] merically solve the 44 simultaneous nonlinear equations re-
that 6(0)— O(AT)~AT*« for small T. For the random quired to construct the expansion @a*). Thus we have
walk, for example,a=—1/2 and so we get a square root ONly gone up _tqa29 in this problem. This is not however an
cusp in Gp(AT) for AT—0 which the series expansion insuperable difficulty.

aboutAT=c cannot reproduce. Consider processes such as 'NOt& however that, even when we cannot get continuum
results, forAT large the expansion will always work, as just

Jh substituting in the raw correlator is good enough.

—=—(=V?)Zh+ 5(t) (60 Having introduced the correlator expansion for the calcu-

at lation of persistence exponents, in the following sections we
| will extend it to calculate properties of the occupation-time

' - and crossing-number distributions.
0.26 - 0.191 L
) ] VIl. OCCUPATION-TIME DISTRIBUTION
< 0.189 C .
0.04 L 1 The occupation-time distribution, considered for the con-
b ; tinuous case in Ref§9—11], is the probability distribution
. 0187 o0z 004 006 R(7(T)), where
) n
0.22 | : . 10T
r(T)=—f dT'OX(T")) (63
TJo
02T e | and ©(X) is the Heaviside step function. For a symmetric
S distribution of zero meanRy(7) is symmetric aboutr
=1/2. ThenR:(0) andR+(1) give the persistence probabil-
018 | 0 100 ity P(T) introduced earlier. The discrete-sampling equiva-
n lent, R, 5, is the probability thaX(T) has been found to be

_ positive at exactlys out of then samplings. Thus,
FIG. 9. Plot of§,, againstn for smalln. Then=1,2 results are

omitted as they are known analytically to be 1/2 and 1/4, respec- 10
tively, and only one constraint may be imposed on the’ Reagtzox- s(n)/n=r(n)= = z O(X(iAT)). (64)
imant in these cases. Note th@t goes to the continuum result of ni=1

0.187%1) (solid line) rather slowly, in fact as b/ see inset. The

results were obtained using Pad@proximants with two con- Writing O (X(1AT))=(1+0y)/2, whereo;=sgr X(iAT)],
straints, an average being taken of suitable  Pagigroximants of we get

order 14 to 10. Inset: plot of,, against h showing thaté,,— 6.,

«1/n for n>20. (r(n)=3 (65)
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and

1 n n
221 12‘1 sin Y[ C(|i—j|AT)], (66)

(r(m3)==+
4  2mnci=

where we have used the result tlﬁaﬁaJ-):(Z/w)sin*l[C(H
—j|AT)]. If we choose as before to work to a given order in

PHYSICAL REVIEW E 69, 016106 (2004

~[p(N)]" for n large gives us an expression fp(r) which
we can evaluate by steepest descents:

[ (r)]”—i § ﬂexl:[n{ln(1+t)—r|nt+InY(t)]}
P o T ot ’
(72

the correlator, we need only evaluate the sum up to thajyhere we have replacer? by t, and Y(t)=Y (\). As a

order. Taking the large limit, we can change the sum to

Lo 5S sinickan] 67
4n  ank=1

(r(m?)= >+
4
whereo is the order to which we wish to work. It has been
pointed out[16] that for n large, the widely separaten
time) parts of the time series become uncorrelated and, fol
lowing the central limit theorenR, ¢ is Gaussian fos close
to 1/2 with standard deviation given by E&7). We will use
this as a check of our final result f&,, .
To find R, s we must sum over all “paths” involvings
positive samplinggand n—s negative ones So the prob-
ability, R, 5 to find s positive values frorm samplings is

Rn,s= < 5zsfn,§i: 0'i>
. 2

1 n
=<2n 2y P oLl (1+eiai>>, (69)
where the variables; specify a particular “path” of positive
and negative samplings;=+1 (—1) specifies a path that
is positive (negative at timeiAT. §, 4 is the Kronecker
delta function which we choose to write in analytic form as a

Cauchy integral

5 1
B 2i

dz

Ja Bl (69

simple check, at zeroth ordé&f is 1/2 and the method of
steepest descents gives a saddle-point vﬁgﬁ)ecr/(l—r),
and

Rn,3~%exp{—n[rlnr+(1—r)|n(l—r)]}. (73

This is the same as the combinatorial result,

m

when expanded to leading order for langaising Stirling’s
formula. Note that there is hence alsoya term in Rns
which we ignore relative to the exponential fioroo.

We use the method of steepest descents in the following
way. Having found the positiot!”) of the saddle point to
zeroth order, we substitute it into the right-hand side of the
general saddle-point equation

1
o

n

rn (74)

n,s

r

1-r

ts(1+tg)

t
s 1-r

Y'(ts), (79

whereY ' (t)=dY/dt, and thus find; to first order, and so
on recursively up to tenth order. Substitutinginto the ex-
ponent of Eq.(72) gives an analytic expression &, s in
the largen limit and hencep(r). Just as in the expression for
persistence, the expression fg(r) is rather long and it was
only possible to fingp(r) analytically to tenth order.

As stated in the preceding section, forclose to(r)

where the integration contour encircles the origin. Substitut— 1/» p(r) approximates to a Gaussian distribution

ing this into Eq.(68) gives

1 dz |1 o
R”ﬁ_ﬁ 225-n+1\ on oSy |1;[1 z(1+€oy) ).
(70)
Summing over the;'s gives
1 dz (1+22\"/ 1" -1
Rn’szz_q-ri s 2 Ell:[l T 241t
(71

1 (r=(r)?

2n (B (1)? (7o

p(r)“eXp[—

Thus one expects that the quantity rIig%(r —(ry)%

[ —2nIn p(r)] should equal the variance ofcalculated pre-
viously, and indeed these two quantities agree term by term
to tenth order, providing a useful cross-check.

We apply our result to the random walk, random accelera-
tion, and diffusion from random initial conditions in one to
three dimensions. We recall thBf, ¢ is the probability fom
measurements oK to return s positive values. We have

The term which is averaged over is identical to that of theshown that forn—c, s—c with r=s/n fixed it has the

normal persistence calculation apart from the factef (
—1)/(z%+1) associated with eachr;. Making this minor
change to the previous calculation of persistence gives us
term Y"(z) where before we hag", and soY («)=p. Re-
placing s by rn where O<sr=<1 and anticipating thaR, ¢

form R, s~[p(r)]", which can be written in the alternative
form R, s~exd —6p(r)T], whereT=nAT as usual andp
& —|n p(r)/AT.

Plots of 6p(r) againstr for various values ofAT are
shown in Fig. 11. For the diffusion equation we are able to
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0.25 ' ¢, provided that it is symmetric. We have also obtained the
the large deviation function fow= /4 by the correlator
method. The comparison with the exact results is shown in

02 A Fig. 11.
045 £ o« VIIl. OCCUPATION-TIME PARTIAL SURVIVAL
= o Here we consider the discrete occupation-time partial-
& o survival probability,R,,(p). Let us suppose that the process
ANES L 1 “dies” with probability 1 —p wheneverX is sampled to be

positive. ThenR,(p) is defined to be the probability of the

“ o process survivingh samplings if the variableX; survives

0.05 |- e uy o . being sampled as positive with probabiliy Samplings as
' ' negative are always survived. Thus,

0 I 1 ..\.:::.':'i"" ;
0 0.1 0.2 03 0.4 05 Ra(P)= >, PRns "
§=0

r

FIG. 10. Plot of the continuum large deviation functiégr) and soR,(p) is also the generating function f&, . since
againstr for the diffusion equation in one, two, and three dimen- '
sions (bottom to top, respectively 6(r) is symmetric aboutr 1 ds
=1/2. The results were obtained using Paggroximants with two Ryps=——
constraints, an average being taken of suitable Rageoximants ©oshdp®
of order 10 to 7 for one and two dimensions and of order 7 to 6 for

three dimensions. or alternatively

Rn(p) (79
p=0

apply the approximant to Padlee series and apply two con- R — é ER 80
straints, giving us good estimates for the continud(n), ns— pstl n(P)- (80)
i.e., the limiting value of9p(r) asAT—0. Plots ofd(r) are

also shown in Fig. 10. The second constraint, thatAlso, writing ps as expg¢In p) and expanding the exponen-
dé(r)/dAT|s7-0=0 for sufficiently smooth processém- tials gives
cluding diffusior), comes from a similar argument to that

given earlier[24] for standard persistence: asT is in- . np'

creased from zero, the first correction #docomes from the Inp"(p)= Zl T(s‘>c, (81
contribution of a path that is the same as a contributing path =

in the continuum, apart from one undetected double Crossmﬁ/here<sj)c is thejth cumulant of the occupation tims,and
which (to2 lowest order inAT) gives a correction t® of o have usedR,(p)=[p(p)]", which, as for persistence
orderAT* and thusdf(r)/dAT|57-0=0. _ (but unlike R, ¢) is true for anyn provided thatn is larger
The function6(r) is the large-deviation function for the tha the largest diagram involved in the evaluatioiRgfp).
occupation-time distribution. Close te=(r)=1/2, itis qua-  Thys calculatingR,(p) gives us another method for finding
dratlc inr—{r). The probability distributionP,(r) 2of r2|s the moments of the number of crossings and &¥sq al-
given by Pr(r)<[p(n]"=exd —(1/2)(r—(r))7((r")  though the evaluation oR, s by the contour integration is
—(r)?)] for r near(r). This means that the typical fluctua- engirely equivalent to the previous method and differentiating
tions inr around the mean are of order *?for largensince g (p)s (=rn) times becomes unfeasible for large
the variance is proportional tori/ The full functioné(r) is an(p) is found in a similar way to before, by summing
required to determine the probability of large deviations fromgyer | possible “paths,”
the mean, where the fluctuations are non-Gaussian.
We end this section by noting that the full large deviation

o

1 " (p(l+o) =1
function 85 (r) associated with the occupation-time distribu- R.(p)= <—n E H { 1— v _'_1} > ,
tion was computed analyticalji8] for the intrinsically dis- 2" g1 | (1-0y), &=
crete process (82
U= Cog @) b +SiN(@) ;1 77 whereo;=sgn(X;) as usual, and the average is over the vari-
| I I—1»

ablesX; (i=1,...0n). Thus we get
where theg,; are independently distributed Gaussian random 1 n 1
variables. This process appears as a limiting case of the dif- _ = n p—L
fusion equation on a hierarchical latticg0] and also appears R(P) on (p+1) .1:[1 1+ p+1 il (83)
in the one-dimensional Ising spin glass problei8,31]. Ex-
act results were obtained for the case w/4. Interestingly, which is the same as the calculation for normal persistence
these results turn out to be independent of the distribution oéxcept that we include a factop{1)/(p+ 1) with eacho;
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03 T T T T 0.2 T T T T

0.2
0.2 b

0.15

0.1

0.05

0.5

0.5 T T T T

0.1

0.075

0.025

. . 0.5
(© r ® '

FIG. 11. Plots ofgp(r) againstr with exp(—AT/2)=1/2, 1/4, 1/8, 1/16, 1/256, and #fAtop to bottom, respectivelyfor the following
processes. The random waltop left). The random acceleration probleftop righy. Diffusion in one dimension. The exp(AT/2)=1/2
curve is not shown as the raw series had not converged at tenth order. Also shown are the results for the continuum limit frémiédie 10
left). Diffusion in two dimensions. Also shown are the results for the continuum limit from Fig(nii@dle righy. Diffusion in three
dimensions. The exp(AT/2)=1/2 curve is not shown as the raw series had not converged at tenth order. Also shown are the results for the
continuum limit from Fig. 1Qbottom lef). The intrinsically discrete process= (¢;+ &;_1)/\2 where thep;’s are independent identically
distributed symmetric random variables. The exact rg¢4il (solid line) is also shown. The curves differ by a maximum of 0.005 75. Note
that there is nA T dependence in this case. The curves were evaluated to 10th order in the raw series, i.e., in powersAG/2xeikcept
for diffusion in three dimensions where it is exp§AT/2) and the intrinsically discrete case where the correlator itself is used. Note that in
all cases =0,1 corresponds to ordinary discrete persistence and that the curves are symmetric=ab@ubottom righ.
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and an overall factor g+1)". Thus we can findp(p) 0.125 .
=exd —6(p)] to order 14. This is done and results for diffu-

sion in one to three dimensions are shown in Fig. 12. Note

that, forAT—0, a positive excursion by the underlying con-

tinuous process will survive with zero probability since the

number of samplings tends te. Thus #(p)|at—o iS just the 0.075
continuum persistence exponent. It is therefore possible to
improve 6(p) for AT small by applyingd(p)|st-0=0 as a i
constraint, in addition to the standard constraip)|t—o 0.05
=1.

A further check is provided by using(p) to generate the
first two cumulants. The results agree term by term to tenth
order with the method used to calculate the méamially)
and the variance. 0 . .

We next compare the results obtained by the correlator 0 02 04 06 08 !

. (a) exp(-AT/2)
method to an exactly solvable case, namely, the discrete pro-
cess in Eq(77) for o= /4. In this case, an exact expression 0.2 . . . .
of the exponen®(p) is known[18],

(P)

0.025

1
0(p)= —> (84

£ o1

the correlator method is shown in Fig. 13. 0.05
In the last two sections we have examined the occupation-

time statistics. The occupation time depends only on the

signs ofX(iAT) at eachi, that is, it is local. This meant that

we merely had to attach additional factors to each local % 02 04 06 08 1

X(iAT). In the next sections we will be studying the number  (b) exp(-AT/2)

of crossings, so we must consider the signs of BOHNAT)

andX((i+1)AT). Thus the problem is not local in the sense

used above and we cannot just attach additional factors to

eachX(iAT). The solution, as explained in the following

section, is to attach additional factors to the lines connecting

two X’s in the diagrammatic notation.

//
/ . //
T -

—

A comparison of this exact result with the one obtained by /
/

0.25 T T T T
0.2

0.15
IX. DISTRIBUTION OF CROSSINGS

We now apply the correlator expansion to calculate the <=
distribution of crossings of an arbitrary GSP. We start from 01
the calculation of the persistence. The method is the same up
until we assign factors to the diagrams on the lattice. We
wish to calculate the probability ah detected crossings im 0.05
samplingsP, r,, rather than just the probability of no cross-
ings which was the persistence calculation. To do this, we
sum over all the possible ways in which thasecrossings 00 oD oa 08 08 1
could occur. Furthermore, we note that if we have alineina (g exp(-aT/2)
diagram connecting two vertices, asctrossings occur be-
tween these two vertices, then the fadB{jAT) associated
with it from the pe_rsisten_ce _calculat_ion shoul_d also have 2 gFic 12. Plots of6o(p) against exptAT/2) with p=0, 1/4,
factor (—1)° associated with it. Consider the diagram showny s /8 3/4, and 7/gfrom the top, respectively 6(p) has been
in Fig. 14. constrained to give the persistence result at the continuum. The

Besides the enumerations done for the persistence calCdurves are produced from averages of suitable constrained Pade
lation we must consider the following four cases. approximants, although in practice the various Papproximants

(1) No crossings occur on the sites where the diagram igre indistinguishable. Top, diffusion in one dimension. Middle, dif-
placed. This would occur with probability fusion in two dimensions. Bottom, diffusion in three dimensions.
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0.5 T T T T n-1
o ) (89
04 r 7 accounting for all the ways in which the crossings can
occur on the whole lattice. Note that, although we use the
term “probability,” when run over the whole latticemulti-
03 | . plied by the factorsf—2)(n—3)/2!] each probability be-
= comes the exact number of ways in which the corresponding
& event occurs. Thus by introducing these extra rules when
02 f . enumerating the diagrams on the lattice we are able to cal-
culateP, ,, the probability of exactlyn detected crossings
occurring inn samplings. Fom large we expect that, as
01 | ] usual,
Pn,mwpnm’ (90)
% 02 04 06 0.8 1 and so we finth,, as
p
FIG. 13. Plot of 8p(p) againstp for the processy;=(; pm=lim M (91
+¢i_1)/\2. The exact(solid line) and raw correlator expansion n—e  Pnm
(dotted ling results are shown, the two curves being indistinguish-
able except neap=0. This has been done although due to the additional factors
it was possible only to go to tenth order due to memory
(n—m—1)(n—m—-2) constraints. It has been checked that the result agrees term by
(85 term with the normal persistence calculation for=0 and
(n=1)(n—2) with alternating persistence fon=n. Figure 15 showg(r)

. againstr wherern=m for various values of exp{AT/2) for
and there are no sign changes. , the random walk, random acceleration, and diffusion in one
(2) There is one crossing between the first and secong ihree  dimensions. Notice that for =(ry=1/2
vertices. This occurs with probability — (1/m)sin"IC(AT), p(r)=1. Close to this pointp(r) ap-
proximates to a Gaussian distribution,
m(n—m—1)

(—1(n-2) (86) p(r) e L= 22 =01, 92

and there is a factor-{1)? associated with it. where the variancér?)—(r)? agrees term-by-term with the
(3) There is one crossing between the third and fourthcalculation in the following section. Remember that there is

vertices. The probability of this occurring is as above and® nNext-to-leading ternfpreexponential factor ynin Py o,

there is a factof—1) associated with it. as can be seen from considering th& =~ (lowest ordeyr
(4) There is one crossing between the first and seconfas€:
vertices and one crossing between the third and fourth verti- n
ces. This occurs with probability _1 n—1)% [2 (1 1 93
mmoonl m m \2 (1-nt )
m(m—1)
m (87) Note that we are considering the number of detected

crossings per samplin@ or 1). As AT—0 the fraction of
(detected crossings will go to zero. Because of thig(r)
—oo for AT—0 except for the =0 case which is just stan-
dard persistence. As alwayss®(r)<1, and we choose to
plot p(r) rather thand(r). We have not applied any con-
straints to the series.
(n—=1)(n—2) Recently one of uf5] calculated the distribution of cross-
(89 ings and partial-survival probability of the intrinsically dis-
crete process); given by Eq.(77) for the special casa
over and above that for the persistence calculation. Furthee= 7/4. The correlator of the process is
more, there is an overall factor

Substituting this into the correlator expansion gives the result
FIG. 14. A fourth order diagram. shown in Fig. 16 for comparison with the analytic result. The

and there is a factor{1)3(—1) associated with it. Hence
this diagram has an additional factor

(n—=m-=-1)(n—m—-2)—2m(n—m—1)+m(m—1)

C(i—j)=5i’j+COSwSina)(5Lj,1+5iyj+1). (94)
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dimension with expt AT/2)=0 to 6/10. Middle right, diffusion in two dimensions with expfT/2)=0 to 7/10. Bottom, diffusion in three
the raw series.

FIG. 15. Plots ofp(r) againstr with exp(—AT/2) increasing from Qtop right of each figurein steps of 1/10. Top left, the random walk
dimensions with exp¢ AT/2)=0 to 3/10. Note thap(r) is 1 at the mean value ofgiven by(r)=1/2—sin {C(AT)]/=. The plots are of

with exp(—AT/2)=0 to 8/10. Top right, the random acceleration process with €43(2)=0 to 7/10. Middle left, diffusion in one
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1 T T T ' ' ' T

03 _
0.25 _
0.75 .
02 .
— £
Z 05} 1 “o 0.15 | 1
_ 01 f .
0.25 | e
0.05 - .
0 ' ' ' % 0.2 0.4 0.6 08 1
0 0.25 o.rs 0.75 1 exp(-AT/2)
FIG. 16. Plot of p(r) againstr for the processy;=/(d; FIG. 17. Plot ofo? against exp AT/2). The curves are, from

+¢_1)/\2 where theg;’s are independent identically distributed the top right, the linear growth equatid60), the random walk,
symmetric random variables. The solid line is the numerical evalufandom acceleration, and diffusion in three, two and one dimen-
ation of the exact result and the dashed line is the result of th§/ons. The curves are the raw series in powers of €43(2) to
correlator expansion. The agreement is good untiD.73, and be- 14th order in the correlator and are plotted only as far as their series

comes badly wrong as—1 (see text have converged.

agreement is good far small but forr=0.73 the series has "1

not yet converged by tenth order. This shows up in the way m= rnzz —(1-0y0j+1), (95
thatp(r) changes as the order is increased from 1 to 10. For =12

r small there is oscillatory convergence whilst fdarge the _ . L

convergence is monotonic or, foe0.73, has not occurred. whereo;=sgri X(IAT)]. This gives
The fact that convergence does not occurrfdarge is pre- 1 1
sumably because the series is less good for large numbers of (ry=—=——sin" Tc(AT)], (96)
crossings. This also occurs, for example, for the random ac- 2w

celeration problem where the alternating persistemeel()
result converges more slowly than the standard persisten
(r=0) result. That it fails so badly whilst the smaltesult is
acceptable is surprising. Nevertheless, by checking whether

@s derived in Refl26]. One may further attempt to evaluate
the variance ofm,

. 7 1
or not the series converges as the order is increased to 10, we;2/, — (m2)—(m)?)in= — E 2 (101110504 1)
can tell whether the result is reliable. For the case 4ni=1j=1
:77/12, for Wh|ChC(|_J):5|'J+%(5|‘J,l+ 5i,j+l)’ the se- _ 9
ries has converged for all although there is no analytic (0i01:1¢0j0j41)), (97

result for this case. In fact the case studied is the one fof oy, jnyolves calculating the connected 4-vertex diagrams

% the correlator expansion. The calculation is essentially
identical to that of Sec. VI apart from the extra cases of
=j andi=j =1 and the result to 14th order may be read off.
Figure 15 shows(r) againstr for various processes and
values ofAT. Close tor=(r), p(r) is given by

notice that thep(1)=0 result is due to the requirement that,
in order thaty; alternate in sign, the magnitude &f must
increase every time step. ThBg , decays as 2"/n!, which
is faster than a power afi, implying p(1)=0. For other
values of the coefficients ap; and ¢; _; this is not the case
and presumably(1) is nonzero. ;{ 1 (r—(r))?
In this section we have calculated the distribution of p(r)~exg — — ———
crossingsP,, m, to tenth order in the correlator by extending 2n (r?)—(r)?
the diagrammatic technique. In the following two sections

; 2
we derive the standard deviation of the number of crossinggd comparison ofr(—(r))*/[—2nIn p(r)] agrees term by
and then us@, , to calculateF (p), the partial survival of term to 14th order in the correlator with the direct calculation

crossings probability. of (r?y—(r)2, providing a useful cross-check.

The result forr?)—(r)? for the random walk also agrees
with that of Eq.(20) (the matrix method The variance for
various processes is shown in Fig. 17.

The number of detected crossingsrirsamplings,m, is Thus we have found the variance of the number of cross-
(up to an end effect that is negligible for largg ings for an arbitrary process to 14th order in the correlator.

, (98)

X. THE VARIANCE OF THE NUMBER OF CROSSINGS
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This involved calculating the 4-vertex diagrams only, and 0.5 . . . .
therefore it is entirely feasible to go to higher orders since
the 4-vertex diagrams are relatively simple. Notice also that
the variance only contains even orders, as one would expec 04 | 1
from the 4-vertex diagrams.

In the following section we complete our calculations by
finding the partial-survival probability for an arbitrary GSP, 03 | .
this also being the moment generating function. The results

~

will be shown to agree with those of the current section. &
0.2 j
XI. DISTRIBUTION OF CROSSINGS PARTIAL SURVIVAL

As for the specific case of the random walkBec. Vj, we
may consider the partial-survival probabilitly,(p), the
probability of surviving up to thenth sampling if each de-
tected crossing is survived with probabilipy As stated in 0 , . . .
Sec. V, this is also the generating function f ,, and the 0 0.2 0.4 0.6 0.8 1
cumulant generating functigm]: P

FIG. 18. Plot of 6(p) againstp for the processy;=(d;
" + ¢i_1)/\2. The solid line is the exact result and the dashed line is
Fn(p)= 2 pmpn,m (99 the result of the correlator expansion. They differ by a maximum of
m=0 0.005 76(at p=0).
and , ) )

The results from the matrix method partial survival for the
random walk and random acceleration, derived in Sec. V,
agree with those of the correlator expansion term by term to
within the numerical precision of the matrix method. Also,
using F,(p) as a generating function, we find that the first
two cumulants agree term by term to tenth order with the
results of Sec. X. We are also able to calculate higher cumu-

i
('r;f)) (e (100

InF(p)=>,
=1

where(r’) is thejth cumulant. From Eq99) it can be seen
thatF,(p) is a sum of terms containing,Ym°p™ wheres is
some positive integer. These can be simply evaluated to give
an expression fof ,(p) and hence,, . As for the occupation
partial survival,F,(p)=p(p)"=exd —é(p)n] for all n even i
though this is not true foP, .,. 0.25 k. .
For rough processes, the continuum partial survival is the SO
same as persistence, since any crossing entails an infinit
number of crossings and thus nonsurvival. For smooth pro- R
cesses however, calculation @fp) and hence that of(p) ™ N

= —In[p(p)] is nontrivial. For the random acceleration prob- € o.15 | N i
lem the exact result is Reff32],
01} N 1
1 6 P
O(p)=—|1——sin"~—|, (101
4 T 2 0.05 1 |

while for the intrinsically discrete proce$gq. (77)] it is [5]

0 0.2 0.4 0.6 0.8 1
sin”tJ1—p? 0
0(p)=|n ? . (102)
P FIG. 19. Plot of (p) againstp for (top to bottom the
. . ) d"x/dt"= 5(t) process withn=2 (random accelerationn=3, n
Figure 18 shows this result and the raw series result for com= 4 5 4n . (equivalent to diffusion in two dimensions=or n

parison. _ =2 (top curve$ the exact result101) is shown(dashed lingalong

For general processes we apply the constraint to the serig the 11A (dotted and the Padepproximant with one constraint
thatp(p)|sr-0=1. For sufficiently smooth processes, as be-(sojid ling). For the other cases, the Ii@otted and Padepprox-
fore, the first correction t@(p) nearAT=0 will be of order  jmant with two constraint¢solid line) are shown. The correlator
AT2. We apply this additional constraint to the appropriateresults are an average of suitable Pagproximants of order 10 to
processes and the corresponding continuum results am Note that the IIA is rather inaccurate for the random acceleration,
shown in Figs. 19 and 20. but improves as increases.
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0.25 . . . - discrete time points. Various observables associated with the
| distribution of crossings have been introduced via the sim-
plest GSP, namely, the Orstein-Uhlenbeck process, for which
0.2 1 we were able to compute these quantities to good accuracy
i for most of the range of the time between crossings. For
non-Markovian GSPs, it is however hard or impossible to

0.15 " . compute the statistics of crossings by this method.
= We have therefore extended the correlator expansion of
=] Ref.[25] to calculate properties of both the crossing and the
o1 f . occupation-time distributions in the stationary state. The ex-

pansion in powers of the correlator works well when the
variables are relatively weakly correlated. For stronger cor-
0.05 | . relations the series expansion does not converge. We are
however able, for the case of an underlying continuous and
sufficiently smooth process, to extrapolate our results all the
0 : : : : way to the continuum by using the Padpproximant with
' ' ' two constraints. Thus even in the continuum we have been
able to calculate the persistence exponents, the occupation-
FIG. 20. Plot of6(p) againstp for diffusion in one, two and time exponents and the partial survival of crossings expo-
three dimensiongbottom to top. The IIA results(dotted and the  nents to high precision. These results compare well with
correlator resultgsolid lineg are plotted. The correlator results are those of the independent interval approximation, the other
an average of suitable Padpproximants of order 10 to 7 for one general method. In most cases they are more accurate, how-
and two dimensions and 6 to 5 for three dimensions. ever, and they also give an estimate of the error of the result
which the IIA does not. Furthermore, by calculating higher
lants. We have also used the method of steepest descentsd@lers the results may be improved. We believe we have

p

calculatep(r) from p(p) as a further cross-check. demonstrated convincingly that the correlator expansion is
This evaluation of the crossing partial survival completesthe method of choice for calculating persistence properties of
our calculations. Gaussian stationary processes.
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