
PHYSICAL REVIEW E 69, 016106 ~2004!
Persistence exponents and the statistics of crossings and occupation times
for Gaussian stationary processes
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We consider the persistence probability, the occupation-time distribution, and the distribution of the number
of zero crossings for discrete or~equivalently! discretely sampled Gaussian stationary processes~GSPs! of zero
mean. We first consider the Ornstein-Uhlenbeck process, finding expressions for the mean and variance of the
number of crossings and the ‘‘partial survival’’ probability. We then elaborate on the correlator expansion
developed in an earlier paper@G. C. M. A. Ehrhardt and A. J. Bray, Phys. Rev. Lett. 88, 070602~2002!# to
calculate discretely sampled persistence exponents of GSPs of known correlator by means of a series expansion
in the correlator. We apply this method to the processesdnx/dtn5h(t) with n>3, incorporating an extrapo-
lation of the series to the limit of continuous sampling. We then extend the correlator method to calculate the
occupation-time and crossing-number distributions, as well as their partial-survival distributions and the means
and variances of the occupation time and number of crossings. We apply these general methods to the
dnx/dtn5h(t) processes forn51 ~random walk!, n52 ~random acceleration!, and largern, and to simple
diffusion from random initial conditions in one to three dimensions. The results for discrete sampling are
extrapolated to the continuum limit where possible.
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I. INTRODUCTION

Stochastic processes driven by Gaussian white noise
a wide range of applications in the physical sciences
beyond, ranging from Brownian motion to options pricin
Here we focus on two basic properties of a stochastic Ga
ian time series: the number of crossings of the mean valu
the series, and the fraction of time for which the series
above its mean value. The former, termed the crossing n
ber, has long been of interest to engineers and mathem
cians@1–3#, and more recently to physicists@4,5#. The latter,
termed the occupation time, has also been studied by m
ematicians for a long time@6–8# for both Gaussian and non
Gaussian stochastic processes and has recently seen a r
in the physics community in the context of nonequilibriu
systems@9–13#. The occupation-time distribution for a sto
chastic process is also important due to its potential appl
tions in a variety of physical systems which include optic
imaging @14#, analysis of the morphology of growing su
faces @15#, analysis of temperature fluctuations in weath
records@16#, in disordered systems@17#, and also due to the
connection between the occupation time in certain disc
sequences and spin-glass models@18#.

Of particular interest is a limiting case of these two pro
erties, namely, the probability, termed the persistence p
ability @19#, that the time series is always above its me
value up to timeT. The latter, for stationary Gaussian tim
series, typically decays as exp(2uT) for T large, with the
exponentu in general taking a nontrivial value. For continu
ous processesX(T), the independent interval approximatio
~IIA ! @20,21# may be used to calculate approximately~for
continuous sampling! the asymptotic~i.e., large-T) forms of
some of the probability distributions above. This approa
which makes the~generally invalid! assumption that the time
1063-651X/2004/69~1!/016106~22!/$22.50 69 0161
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intervals between zero crossings are statistically indep
dent, is surprisingly accurate in many cases. However,
IIA involves an uncontrolled approximation, which cann
be improved upon in general, and whose numerical accur
is hard to estimate. Until now, the IIA has been the on
general analytical technique available. In the absence of
act general results, calculations of probability distributio
exist only for certain specific processes, although a sh
time expansion for a general process has been develo
@22#.

Both continuous and intrinsically discrete time series c
be studied. In this paper we consider discrete-time samp
of an underlying continuous Gaussian stationary proc
~GSP!, X(T), with zero mean, unit variance, and known co
relatorC(T)5^X(T)X(0)&. We sample this process at eve
time stepDT, and study the discrete-time seriesX( iDT).
This is, of course, completely equivalent to studying a d
crete process with the same correlatorsC( j DT). In Refs.
@23,24# we have studied the persistence of a discret
sampled random walk and of a randomly accelerated p
ticle, both of which can be mapped to a GSP by a chang
variables. In Ref.@25# we calculated, using a series expa
sion in the correlatorC( j DT), the persistence probability fo
an arbitrary discretely sampled GSP. By extrapolating to
limit in which the time between samplings tends to zero,
obtained results for several continuum processes. Thus
results developed for discretely sampled processes may
sufficiently smooth processes, be extended to give results
continuous-time processes.

Before going further, we illustrate the main ideas by co
sidering the simplest example of a stochastic process,
continuous-time random walk described by the Lange
equation

ẋ5j~ t !, ~1!
©2004 The American Physical Society06-1
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EHRHARDT, MAJUMDAR, AND BRAY PHYSICAL REVIEW E 69, 016106 ~2004!
where j(t) is Gaussian white noise,̂ j(t)&50, and
^j(t)j(t8)&52Dd(t2t8). The probability thatx.0 up to
time t decays ast2u where the ‘‘persistence exponent’’ isu
51/2. This process is not stationary since its correlator

C~ t1 ,t2!5^@x~ t1!2^x&#@x~ t2!2^x&#&52D min~ t1 ,t2!
~2!

does not depend only on the time differenceut12t2u. Note
that, since the process is Gaussian, it is completely spec
by its correlator and mean. We can map the random w
onto a stationary process by a change of variables;
change to logarithmic timeT5 lnt, and to a normalized pro
cessX(T) via

X~T![
x~ t !2^x~ t !&

A^x~ t !2&2^x~ t !&2
, ~3!

obtaining the equation

dX

dT
52

1

2
X1h~T!, ~4!

whereh(T) is again a Gaussian white noise, andX(T) has
zero mean. The processX(T) is the Ornstein-Uhlenbeck pro
cess. It is stationary, with correlator

C~T1 ,T2!5^X~T1!X~T2!&5exp~2uT12T2u/2!. ~5!

An equivalent mapping can be made for any nonstation
Gaussian processes for which the correlator has the f
C(t1 ,t2)5t1

ag(t1 /t2). Thus although here we only attem
to analyze stationary processes, the results are more w
applicable. Note that the exponential decay, exp(2uT), is
equivalent to the power-law decayt2u, hence the terminol-
ogy ‘‘persistence exponent’’ foru.

The occupation time is the numbers of positive ~say!
values obtained from then measurements ofX(T). Let Rn,s
be the probability distribution ofs for givenn andr 5s/n be
the fraction of measurements that are positive. In the lim
n→`, s→`, with r 5s/n fixed, Rn,s has the asymptotic
form Rn,s;@r(r )#n5exp@2uD(r)T#, where T5nDT and
uD(r )52 ln@r(r)#/DT. Here uD(1)5uD(0) ~all or none of
the measurements positive! is the usual discrete persisten
exponent introduced in Ref.@23#. In a similar way we can
definePn,m to be the probability of observingm zero cross-
ings inn measurements. If nowr 5m/n and we take the limit
n→`, m→`, holding r 5 fixed, we find Pn,m;@r(r )#n

5exp@2uD(r)T#. Here uD(0) ~no crossings! corresponds to
the usual discrete persistence. Although we use the s
symbolsr(r ) anduD(r ) for the occupation-time and cross
ing problems, it should be clear from the context which pro
lem we are referring to.

In this paper we extend the technique of Ref.@25# to
calculate the exponentsuD(r ), or equivalently the functions
r(r ), for the occupation-time distribution and the distrib
tion of crossings for arbitrary discrete or discretely samp
Gaussian stationary processes. The technique gives the e
nents as a series expansion in the correlatorsC( j DT) up to
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C(10DT) andC(DT)10, i.e., tenth order. For the calculatio
of the persistence exponent we work to 14th order. The
sults work well for C( j DT) small, i.e., the time between
samplings large compared to the correlation time of the
tionary process. For certain processes we are able to extr
late the series to the limitDT→0, thus obtaining values o
the continuum exponents that compare favorably with th
predicted by the IIA when measured against exact or num
cal results.

The layout of this paper is as follows. In the first part
the paper~Secs. II–V! we consider the Ornstein-Uhlenbec
process introduced above, this being perhaps the simple
GSPs. By extending the ‘‘matrix method’’ developed in Re
@23# we find the mean and variance of the distribution of ze
crossings as a perturbation expansion to high accuracy.
also use another method to find the same results. The ca
an unstable potential~obtained by changing the sign of th
drift term! is also considered. We extend the concept of p
tial survival @4# to discrete sampling, calculatingFn(p), the
probability of surviving ton samplings if each detected zer
crossing is survived with probabilityp. The results of this
section also provide an independent check of the correl
method in Secs. VIII, IX, and X.

In the second part of this paper~Secs. VI–XII! we apply
and extend the correlator expansion method of calcula
the persistence exponents, occupation-time distribution,
crossing distribution of an arbitrary discretely sampled G
The general method is then applied to some specific
amples of interest, and the results extrapolated to the limi
continuum sampling where possible.

In Sec. VI we introduce the correlator expansion first d
veloped to 14th order in Ref.@25# as a method of calculating
discretely sampled persistence exponents. We explain
technique more fully including the extrapolation to the co
tinuum limit using constrained Pade´ approximants, which al-
lows rather accurate calculation of the standard persiste
exponents. In Ref.@25# this technique was applied to the ca
of the random acceleration process and also to diffusion fr
random initial conditions in one to three dimensions. He
we also apply it to the class of processesdnx/dtn5h(t)
whereh(t) is Gaussian white noise. Then51,2 cases are the
random walk and random acceleration problems alre
studied. Here we calculate the persistence exponents
larger values ofn and show numerically thatun2u`}1/n for
n large. The results are compared to the predictions of
IIA.

In Secs. VII and VIII we extend the correlator expansi
to calculate the occupation-time distribution,Rn,s , this being
the probability ofs positive measurements inn samplings, to
tenth order in the correlator. This gives, in particular, t
variance of the occupation-time distribution which we calc
late in a more straightforward way as a check. We defin
partial-survival occupation probability,Pn(p), as the prob-
ability of surviving ton samplings if each positive samplin
is survived with probabilityp. This is also the generating
function for Rn,s . We find Pn(p) to 14th order in the cor-
relator. We apply the results to the following five GSPs: t
random walk, where the results of Secs. II–V are used a
check of the method; the random acceleration problem;
6-2
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PERSISTENCE EXPONENTS AND THE STATISTICS OF . . . PHYSICAL REVIEW E 69, 016106 ~2004!
diffusion from random initial conditions in one, two, an
three dimensions. Extrapolations to the continuum are
cluded.

In Secs. IX, X, and XI we further extend the correlat
expansion to calculatePn,m , the probability ofm detected
crossings inn samplings. This is found to tenth order in th
correlator and also enables us to calculate the partial-surv
probability and the moments of the crossing distribution.
apply the result to the five GSPs of Sec. VII, and also to
dnx/dtn5h(t) processes forn.2 and to an intrinsically dis-
crete process for which the exact results are known@5#. Ex-
trapolations to the continuum are included and we comp
continuum results with the IIA and also, for the random a
celeration partial-survival problem and the intrinsically d
crete process, to the exact solutions. In Sec. X we show
result for the mean number of detected crossings. We
derive the variance as a series expansion in the correlato
coefficients of which agree with those of Sec. IX. We co
clude with a brief summary of the results.

In the first part of this paper~Secs. II–V! we will study
the detected crossings of the Ornstein-Uhlenbeck proc
Besides being of interest in its own right, this will illustra
some of the methods used later and also provide sev
checks on the correlator expansion of Secs. VI–XII. Furth
more, here we are able to calculate probability distributio
starting at a certain positionX0, rather than just the long
time or stationary state distributions.

In the second part of this paper~Secs.VI–XII! we present
our use of the correlator expansion. The correlator expan
was initially used to calculate the discrete persistence ex
nent of an arbitrary GSP and also, through extrapolation
the continuum, the continuum persistence exponent@25#.
Here we will extend the method to calculate the occupati
time distribution and the distribution of crossings. As the
calculations will require some explanation, we take this o
portunity to describe the correlator expansion in full.

II. DISCRETE BACKWARD FOKKER-PLANCK
EQUATION

Consider the stationary Gaussian Markov process ev
ing via the Langevin equation,

dX

dT
52mX1h~T!, ~6!

whereh(T) is a white noise with mean zero and correlat
^h(T)h(T8)&52Dd(T2T8). This is the Ornstein-
Uhlenbeck process whose persistence exponent for dis
sampling was calculated in Ref.@23#.

Integrating Eq.~6!, we get

X~T!5X0e2mT1e2mTE
0

T

h~T1!emT1dT1 , ~7!

whereX05X(T50). Let T5nDT. Then the mean position
^Xn& aftern steps starting initially atX0 is given from Eq.~7!
by
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^Xn&5X0e2mnDT5X0an, ~8!

where a5e2mDT. Similarly one finds that the correlatio
function is given by

^@Xn2^Xn&#@Xm2^Xm&#&5D8~aun2mu2an1m!, ~9!

where D85D/m. Thus in the stationary state,n→`, m
→` with n2m fixed, this process has mean zero and
correlatorC(T1 ,T2)[^X(T1)X(T2)& given by

C~T1 ,T2!5C~ uT22T1u!5D8e2muT22T1u. ~10!

Let Qn(m,X) be the probability that starting atX at T
50, the process,when sampled only at the discrete poin,
changes signm times within n discrete steps. Note tha
the probability Pn,m of observing m sign changes inn
measurements~as defined in the introduction! can be sim-
ply obtained from Qn(m,X) via the relation, Pn,m

5*2`
` Qn(m,X)p0(X)dX wherep0(X) is the initial distribu-

tion of X which we will take as the stationary distribution o
X. One can write down a recursion relation forQn(m,X),
valid for X.0, by noting that at the first step either th
process changes sign or it does not.

Qn11~m,X!5E
0

`

Qn~m,Y!G~Y,DTuX,0!dY

1E
2`

0

Qn~m21,Y!G~Y,DTuX,0!dY,

~11!

whereG(Y,DTuX,0) is the probability of going fromX to Y
in a timeDT, given by

G~Y,DTuX,0!5
1

A2pD8~12a2!
e2[(Y2aX)2/2D8(12a2)] .

~12!

Using the rescaled variablesx5X/AD8(12a2) and y
5Y/AD8(12a2), and making use of the symmetryQn(m,
2x)5Qn(m,x) we get

Qn11~m,x!5
1

A2p
E

0

`

@Qn~m,y!e2(y2ax)2/2

1Qn~m21,y!e2(y1ax)2/2#dy. ~13!

Note that form50 this reduces to the persistence proble
studied in Ref.@23#, whilst for m5n we have the alternating
persistence problem@23#.

We define the generating function, Fn(p,x)
5(m50

n Qn(m,x)pm. The generating function has a physic
interpretation. If one considers that with every detec
change of sign a particle survives with probabilityp ~partial
survival!, thenFn(p,x) is precisely the survival probability
of the particle. Note that forp51 this probability is 1 whilst
for p50 we recover the usual discrete persistence.
6-3
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EHRHARDT, MAJUMDAR, AND BRAY PHYSICAL REVIEW E 69, 016106 ~2004!
Multiplying Eq. ~13! by pm and summing overm we get

Fn11~p,x!5
1

A2p
E

0

`

Fn~p,y!

3@e2(y2ax)2/21pe2(y1ax)2/2#dy. ~14!

Let En(x)5(m50
` mQn(m,x)5dFn(p,x)/dpup51 denote

the expected number of sign changes up ton steps starting a
x at T50. Taking the derivative with respect top and putting
p51 in Eq.~14!, it follows thatEn(x) satisfies the recursion
relation

En11~x!5
1

A2p
E

0

`

En~y!@e2(y2ax)2/21e2(y1ax)2/2#dy

1
1

2
erfcS ax

A2
D , ~15!

where erfc(x) is the standard complimentary error functio
and the recursion in Eq.~15! starts with the initial condition
E0(x)50. Also note thatGn(x)5(m50

` m(m21)Qn(m,x)
5d2Fn(p,x)/dp2up51 satisfies the recursion,

Gn11~x!5
1

A2p
E

0

`

Gn~y!@e2(y2ax)2/21e2(y1ax)2/2#dy

1
2

A2p
E

0

`

dy En~y!e2(y1ax)2/2, ~16!

with the initial condition G0(x)50, and whereEn(x) is
given by the solution of Eq.~15!. In order to calculate the
average number of crossings and the variance around
average, we need to solve the two integral equations~15! and
~16!.

If we can obtain the solution ofEn(x) from Eq.~15!, then
we need to average over the distribution of the initial po
tion x to obtain ^m&n5*2`

` En(x)p0(X)dX wherep0(X) is
the initial distribution of the position X and x
5X/AD8(12a2). For a,1, i.e.,m.0, if we choosep0(X)
to be the stationary distribution of the process,p0(X)
5(1/A2pD8)e2X2/2D8, which corresponds to waiting an in
finitely large number of steps before starting the measu
ments, then̂ m&n can be computed exactly from Eq.~15!.
Multiplying Eq. ~15! by thisp0(X) and integrating overX we
get

^m&n115^m&n1l, ~17!

wherel5 1
2 2(1/p)sin21(a). Using^m&050, we get exactly

^m&n5nl, ~18!

which is the random walk case of the general res
^m&n /n51/22(1/p)sin21C(DT) @26#. Note that forDT→0
this reduces to Rice’s formula, while forDT→` it reduces
to n/2 as expected since the values ofX at the discrete points
01610
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become statistically independent. Note that fora.1, there is
no stationary distribution as this corresponds to an unsta
potential.

Note, however, that to computegn5^m(m21)&n by a
similar method, we need to know the full functionEn(x),
that is, we need to solve the full integral equation~15!. In-
deed fora,1, if we choose to average over the stationa
distribution,p0(X)5(1/A2pD8)e2X2/2D8, then by multiply-
ing both sides of Eq.~16! by p0(X) and integrating overx
from 2` to `, we get after straightforward algebra

gn115gn1A2~12a2!

p

3E
0

`

En~y! e2D8(12a2)y2/2erfcS ay

A2
D dy. ~19!

Hence the variance of the number of crossings,sn
25^m2&n

2^m&n
2 , is given by

sn
25gn1nl2n2l2, ~20!

wheregn is given by the solution of the recursion equatio
~19! and l5 1

2 2(1/p)sin21(a). To determinegn from Eq.
~19!, we need to know the full functionEn(x).

In the following section, we show that there is an altern
tive way to derive an expression forEn(x) without solving
the integral equation~15!.

III. ALTERNATIVE DERIVATION OF En„X…

An alternative derivation ofEn(X) can be obtained by
noting the evident relation,

En11~X!2En~X!5 1
2 @12^sgn~Xn!sgn~Xn11!&#5^u~Xn!&

1^u~Xn11!&22^u~Xn!u~Xn11!&,

~21!

whereu(x) is the standard theta function. Noting thatXn and
Xn11 are Gaussian variables, we can compute the right-h
side of Eq.~21! exactly. For this we first need the joint dis
tribution P@Xn ,Xn11# of Xn and Xn11 which involves the
correlation matrixCn,n11 given by

Cn,n115D8F 12a2n a~12a2n!

a~12a2n! 12a2n12 G ,
where we have used Eq.~9! for the matrix elements. Using
this joint distribution and carrying out the Gaussian integ
tions, we get after lengthy but straightforward algebra
final expression of the right-hand side of Eq.~21! as
6-4
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En11~X!2En~X!

5
1

2
erfc~2AnX!1

1

2
erfc~2An11X!

2
1

Ap
E

2An11X

`

dy e2y2

3erfcF2A12a2n12

12a2
AnX2aA12a2n

12a2
yG , ~22!

where An5an/A2D8(12a2n). Changing to rescaled vari
able x5X/AD8(12a2) and using the initial condition
E0(x)50, we get from Eq.~22!,

En~x!5
1

2
(

m50

n21 FerfcS 2
amx

A2
A 12a2

12a2mD
1erfcS 2

am11x

A2
A 12a2

12a2m12D
2

2

Ap
E

2am11~x/A2!A(12a2)/(12a2m12)

`

dye2y2

3erfcS 2A12a2m12

12a2
A 12a2

12a2m

am

A2
x

2aA12a2m

12a2
yD G . ~23!

This can be solved numerically. Fig. 1 showsEn(x)
2nl for a51/2 andn51000.

In the following section we discuss the exact asympto
properties of the mean and the variance of the numbe

FIG. 1. Plot ofu(x)5En(x)2nl for a51/2 andn51000, cal-
culated using Eq.~23!. u(x) is symmetric aboutx50. Also shown
is u(x) for a51/2 derived using the matrix method@Eq. ~30!#, the
two curves are indistinguishable.
01610
c
of

sign changes for the two cases: stable potential,m.0, i.e.,
0,a,1 and unstable potential,m,0, i.e.,a.1.

IV. ASYMPTOTICS OF THE MEAN AND VARIANCE
OF THE NUMBER OF SIGN CHANGES

A. Stable potential: mÌ0

In this casea5e2mDT,1 and alsoD8.0. Thus asn
→`, An5an/A2D8(12a2)→0. Then from Eq.~22!, we

find En11(X)2En(X)→l with l5 1
2 2(1/p)sin21(a) indi-

cating that in then→` limit, En(X) becomes independent o
X ~as long asX,an) and to leading order for largen,

En~x!5nl, ~24!

in agreement with Eq.~18!. Indeed the expression forEn(x)
in Eq. ~23! is a solution of the integral equation~15!. For
finite n, one can writeEn(x)5nl1un(x). An explicit ex-
pression forun(x) can be obtained from that ofEn(x) in Eq.
~23!. Using the explicit value ofl and after a few steps o
algebra we get

un~x!5
1

2
(

m50

n21

sm~x!,

sm~x!5erfcS 2
amx

A2
A 12a2

12a2mD
1erfcS 2

am11x

A2
A 12a2

12a2m12D 221
2

Ap

3E
0

`

dy e2y2
erfcS 2ay

A12a2D 2
2

Ap

3E
2~xam11/A2!A(12a2m)/(12a2m12)

`

dy e2y2

3erfcS 2A12a2m12

12a2
A 12a2

12a2m

am

A2
x

2aA12a2m

12a2
yD . ~25!

Besides, usingEn(x)5nl1un(x) in the integral equation
~15!, we find thatun(x) also satisfies the following integra
equation:

un11~x!5
1

A2p
E

0

`

un~y!@e2(y2ax)2/21e2(y1ax)2/2#dy

1
1

2
erfcS ax

A2
D 2l, ~26!

with l5 1
2 2(1/p)sin21(a).

Now the leading term inEn(x) is nl and is independen
of x as long asx,a2n. This upper cutoff tends tò as n
6-5
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→` sincea,1. Thex dependence ofEn(x) appears only in
the subleading termun(x). Now, asn→`, un(x) tends to a
stationary solution independent ofn ~as long asx!a2n) and
is given by the fixed point solutionu(x) of the integral equa-
tion ~26!,

u~x!5
1

A2p
E

0

`

u~y!@e2(y2ax)2/21e2(y1ax)2/2#dy

1
1

2
erfcS ax

A2
D 2l. ~27!

We can findun(x) perturbatively by expanding theaxy
term in the exponentials in Eq.~27! to get

u~x!5
1

A2p
(

m50(m even)

`
~ax!me2(ax)2/2

m!
E

0

`

u~y!e2y2/22ymdy

1
1

2
erfcS ax

A2
D 2l. ~28!

Defining

I l5E
0

`

u~x!
al /2xl

Al !
e2x2/2dx ~29!

gives

u~x!5A2

p
(

m50(m even)

`
am/2xme2(ax)2/2

Am!
I m

1
1

2
erfcS ax

A2
D 2l. ~30!

Multiplying both sides byal /2xle2x2/2/Al ! and integrating
over positivex gives

I l5 (
m50 ~m even)

`

MlmI m1Jl , ~31!

where

Mlm5
1

A2pa
S 2a

11a2D ( l 1m11)/2

3
G@~ l 1m11!/2#

Al !m!
m even, 0 otherwise, ~32!

Jl5
al /2

Al !
E

0

`

dxxle2x2/2F1

2
erfcS ax

A2
D 2lG . ~33!

Thus

I5~12M !21J. ~34!
01610
This perturbative expansion ina is the matrix method. Al-
thoughMlm is an infinite array, the elements decrease rapi
with increasingl and m since each increment ofl and m
gives a higher power ofa (a,1). We can solve this numeri
cally. Figure 1 showsu(x) for a51/2. Alternatively, using
MATHEMATICA , we can solve Eq.~31! iteratively. At each
iteration we obtain a newI whose elements are a series ina
up to our required order. Convergence is rapid. This can o
be done with a smaller matrix than the numerical meth
but gives a result for generala. Note that we could equiva
lently have done this perturbative expansion on Eq.~15! to
get E(x) and subtracted thenl.

Alternatively, we can directly take then→` limit of the
expression ofun(x) in Eq. ~25! to get

u~x!5
1

2
(

m50

`

sm~x!, ~35!

wheresm(x) is given by Eq.~25!. This has been done nu
merically ~for n large but finite! and found to agree with the
matrix method.

Let us first compute the asymptotic properties of the fix
point solutionu(x). Consider first the limitx→0. Putting
x50 in Eq. ~25! and carrying out the integrations we ge
after some algebra,

u~0!5
1

p
(

m50

`

sin21FaA 12a2

12a2m12
~12A12a2m!G .

~36!

For example, fora51/2, we getu(0)50.191 603 74 . . .
which agrees very well with the result obtained from t
direct numerical integration of Eq.~26! in the largen limit.
Consider now the other limitx→`. By making the change
of variable,y2ax5A2z in the integral equation~27!, we get
to leading order for largex ~where the lower limit of the first
integration tends to2`!,

u~x!'u~ax!2l. ~37!

The solution of this equation is given by

u~x!'
l

ln a
ln x. ~38!

Note thatl/ ln a,0 for a,1 and henceu(x) goes to2`
logarithmically asx→`. This is consistent with the fact tha
En(x)'nl1l(ln x/ln a);(l/ln a)ln(xan)→0 asx→a2n as it
should evidently from the direct expression ofEn(x) in Eq.
~23!.

In Fig. 1, we plotu(x) obtained from numerically evalu
ating the sum in Eq.~25! and also the result obtained usin
the matrix method. The results agree to within numeri
precision. Also, they agree with the asymptotic results in
large and smallx limits. Note that thex→` limit was not
attainable by the matrix or summation methods becaus
both cases the evaluation is done to a finite order or finiten.
6-6
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Once we knowun(x), then we can determine the varian
sn

2 from Eq. ~20!. SubstitutingEn(x)5nl1un(x) in Eq.
~19! and using the fact thatun(x) tends to the fixed poin
solutionun(x)→u(x) for largen, we get

gn115gn12nl21b, ~39!

where

b5A2~12a2!

p
E

0

`

u~y!e2D8(12a2)y2/2erfcS ay

A2
D dy.

~40!

One can easily solve the recursion equation~39! exactly us-
ing g050 and we get

gn5l2n21~b2l2!n, ~41!

whereb is given by Eq.~40!. Substituting this expression fo
gn in Eq. ~20!, we finally get the required exact expression
the variance for largen,

sn
25~l2l21b!n. ~42!

Thus the variance can be exactly determined once we k
the functionu(x) and therebyb from Eq. ~40!. Using the
exact expression ofu(x) from Eq. ~35!, we have, in prin-
ciple, an exact result forb and hence forsn

2 . Substituting the
u(x) derived from the matrix method into Eq.~40! givesb
and hencesn

2 . sn
2/n is plotted as a function ofa for D8

51 in Fig. 2.

B. Unstable potential: mË0

In the preceding subsection, we have seen that fora,1,
the function En(x) behaves asymptotically for largen as

FIG. 2. Plot ofsn
2/n againsta5e2mDT with D851. Note that

sn
2/n→` for a→1, and the series has not converged for largea.
01610
f

w

En(x)5nl1u(x) whereu(x) is given either by the exac
expression in Eq.~35! or equivalently by the solution of the
integral equation~27!. For the unstable potentialm,0, i.e.,
a.1, the number of crossings will be finite and soEn(x)
approaches a steady state asn→`. This is most easily seen
from Eq. ~22!. For a.1, An5an/A2D8(12a2)→` as n
→` ~note thatD85D/m,0). Taking this limit in Eq.~22!,
we see thatEn11(x)2En(x)→0 for all x asn→`, indicat-
ing En(x)→E(x) asn→`. This steady stateE(x) is given
by the fixed point solution of the integral equation~15! with
a.1,

E~x!5
1

A2p
E

0

`

E~y!@e2(y2ax)2/21e2(y1ax)2/2#dy

1
1

2
erfcS ax

A2
D . ~43!

E(x) can be found using the matrix method in the same w
as before but withJl replaced byJl8 where

Jl85
al /2

Al !
E

0

`

dxxle2x2/2
1

2
erfcS ax

A2
D . ~44!

E(x) is shown in Fig. 3 for the casea52.
Alternatively,E(x) is also given by taking then→` limit

of the exact expression in Eq.~23! ~with a.1),

FIG. 3. The expected number of detected crossingsE(x) for the
casea52 ~unstable potential!. Shown are the results of the matri
method and also numerical evaluation of Eq.~45!, which are indis-
tinguishable.
6-7
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E~x!5
1

2
(

m50

` FerfcS 2
amx

A2
A 12a2

12a2mD 1erfcS 2
am11x

A2
A 12a2

12a2m12D
2

2

Ap
E

2am11~x/A2!A(12a2m)/(12a2m12)

`

dy e2y2
erfcS 2A12a2m12

12a2
A 12a2

12a2m

am

A2
x2aA12a2m

12a2
yD G . ~45!
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This is shown in Fig. 3.
We have calculated the variance of the number of dete

crossings and also the expected number of detected cros
starting at positionx. These calculations have been carri
out by two independent methods and the results agree
each other.

V. PARTIAL SURVIVAL

The partial-survival probability,Fn(p,x), is the probabil-
ity of surviving beyond thenth sampling having started atx
if each detected crossing of the origin is survived with pro
ability p. Thus,

Fn~p,x!5 (
m50

`

Qn~m,x!pm ~46!

and, as stated before,Fn(p,x) is the generating function fo
Qn(m,x). Fn(p,x) satisfies the integral equation~14!. We
expect that for largen, Fn(p,x)5@rp(a)#nF(x) where
rp(a)5e2u(p)DT and u(p) is the discrete persistence exp
nent. Substituting this into Eq.~14!, we get an eigenvalue
equation forF(x),

rp~a!F~x!5
1

A2p
E

0

`

F~y!@e2(y2ax)2/21pe2(y1ax)2/2#dy.

~47!

The largest eigenvaluerp(a) and the corresponding eigen
function can then be determined either by the matrix met
or by the variational method as in our previous paper@23#.
Using the matrix method, we get

rp~a!F~x!5
e2a2x2/2

A2p
(

m50

`
am

m!
xm@11~21!mp#I m ,

~48!

rp~a!I l5 (
m50

`

~Glm1pGlm8 !I m , ~49!

where

I m5
am

m!
E

0

`

dy yme2y2/2F~y!, ~50!

Glm5
1

A8p
amS 2

11a2D ( l 1m11)/2
G@~ l 1m11!/2#

l !m!
,

~51!
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andGlm8 (a)5Glm(2a). In fact, Glm is the matrix used for
calculating the discrete persistence exponent@23#, while Glm8
gives alternating persistence. This is to be expected, since
p50 we just have ordinary persistence and forp@1 we
would expect the paths which cross between every samp
~alternating persistence! to dominate. In the same way, on
may calculaterp(a) for the discretely sampled random a
celeration problem studied in Ref.@24#, whose stationary
process is given by

Ẍ1~a1b!Ẋ1abX5h~T!, ~52!

where h(T) is Gaussian white noise with mean zero a
correlator ^h(T)h(T8)&52ab(a1b)d(T2T8), and a
51/2, b53/2 for the random acceleration problem, althou
other values ofa, b can be considered. We get

rp~a!I i j 5 (
k,l 50

`

~Hi jkl 1pHi jkl8 !I kl , ~53!

whereHi jkl andI i j are given in Ref.@24#. Again,Hi jkl is the
matrix used to find the discrete persistence exponent
Hi jkl8 (a)5Hi jkl (2a) gives the alternating persistence exp
nent. We findrp(a) numerically and also as a power seri
in a for the two processes given above. The results are sh
in Figs. 4 and 5. Also the eigenfunctionF(x) for the
Ornstein-Uhlenbeck Process may be found by substitu
the eigenvector corresponding to the largest eigenvalue
Eq. ~48!. Results fora50.5 with p50, 0.5, 1 are shown in
Fig. 6.

So far we have found the mean and variance and also
partial-survival probability for the Ornstein-Uhlenbeck pr
cess, a simple Gaussian Markov problem. We did this
using the propagatorP(Y,DTuX,0) @Eq. ~12!#. We also
showed how the partial-survival probability of other GSPs
known propagator can be found by using the perturba
matrix method, and we illustrated this for the random acc
eration problem. However, the methods used become
gressively harder as the number of variables in the prob
increases. The Ornstein-Uhlenbeck process had only the
sition X, the random acceleration problem hadX and V,
while the persistence problem for the diffusion equation c
not be expressed in terms of a propagator with a finite nu
ber of variables. In the remainder of this paper we will us
different approach based on the correlator of the proc
C(T). This removes the difficulties mentioned above a
can, furthermore, be applied to any GSP of known correla
The results for low-dimensional problems obtained above
slightly more accurate than those given by the correla
6-8
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PERSISTENCE EXPONENTS AND THE STATISTICS OF . . . PHYSICAL REVIEW E 69, 016106 ~2004!
method because they can be calculated to higher order. T
can be used as powerful checks of the accuracy of the
relator method.

VI. AN INTRODUCTION TO THE CORRELATOR
EXPANSION

The expansion starts from the following identity forPn ,
the probability of no detected crossings inn samplings:

FIG. 4. Plot of the random walk discrete persistence eigenva
rp(a) for partial survival againsta5e2mDT for values of the sur-
vival probability p from 0 ~normal discrete persistence, lowe
curve! to 1 @guaranteed to survive sor1(a)51, top curve# in steps
of 0.1. The curves are the raw series ina to ordera50. Note that for
all the curves,rp→1 for a→1 since a walker will always survive
for a timeDT whenDT→0. Since the series ina are finite, they do
not quite converge to 1 in this limit

FIG. 5. Plot of the random acceleration discrete persistence
genvaluerp(a) for partial survival againsta5e2DT/2 for values of
p from 0 ~normal discrete persistence, lowest curve! to 1 @guaran-
teed to survive sor1(a)51, top curve# in steps of 0.1. The curve
are Pade´ approximants of the raw series ina to ordera19.
01610
ey
r-

Pn5K )
i 51

n

Q@X~ iDT!#L , ~54!

whereQ(X) is the Heaviside step function and the expec
tion value is taken in the stationary state. One may w
Q@X( iDT)#5(11s i)/2, wheres i[sgn@X( iDT)#, and ex-
pand the product to give

Pn5
1

2n S 11 (
15 i , j

n

^s is j&1 (
15 i , j ,k, l

n

^s is jsks l&1••• D ,

~55!

where the terms with odd numbers ofs ’s vanish since the
process is symmetric underX→2X ~and therefore unde
s→2s!. To evaluate the terms we use the representatio

s l5
1

ip
lim
e→0

E
2`

` dzlzle
izlXl

~zl2 i e!~zl1 i e!
. ~56!

Carrying out the required averages of the Gaussian pro
gives the correlation functions appearing in Eq.~55!:

^s l 1
. . . s l m

&5E )
j 51

m S dzj

ipzj
D expS 2

1

2
zaCabzbD ,

~57!

whereCab5^X@aDT#X@bDT#&5C(ua2buDT), and there
is an implied summation overa andb from 1 to m. Notice
that we have already taken the limite→0 in Eq. ~57!, with
the understanding that all integrals are now principal p
integrals.

e

i-

FIG. 6. The eigenfunctionsF(x) of Eq. ~47! for a50.5 with
p51 ~lowest curve!, p50.5 ~middle curve!, andp50 ~top curve!.
The eigenfunctions are defined only up to an arbitrary prefac
which has been chosen here so thatF(0)51. Since the eigenfunc-
tions are series inx, for largex they do not converge to the correc
solution. This can be clearly seen for thep51 case where, since th
walker is guaranteed to survive,F(x) is a constant everywhere
whereas the plot is not constant forx>10. For thep50 case,
F(x);xn with n5 ln r/ln a.
6-9



by

t

l.

r-
-

th
pl

s-

o

-
ing

y,
ca
-
o

o-
rm

e
f

ith

o-

the
ing

sic

re
7.
in-

am.
ses
er
tent,
er,
as

s of
sed
d by
er,
hus
be
es
dia-
ng

up

ines
on-

ted
ex-
rtex
and
-
ted
ifi-

n
d

ar

EHRHARDT, MAJUMDAR, AND BRAY PHYSICAL REVIEW E 69, 016106 ~2004!
For them52 case this integral can be done exactly
differentiating with respect toC12 and doing the two simple
Gaussian integrals before integrating again with respec
C12 and imposing the boundary condition that^s l 1

s l 2
&50

for C1250. This gives the well-known result̂s l 1
s l 2

&
5(2/p)sin21C12. Form>4 this method becomes nontrivia
Instead, we choose to expand the exponential in Eq.~57! in
powers ofCab (aÞb) leaving the terms witha5b unex-
panded~noting that Caa51). This allows us to evaluate
each correlation function of thes8s up to a given order in
the correlatorsCab . By symmetry, only terms which gene
ate odd powers of everyza in the expansion of the exponen
tial ~to give even powers overall in the integrand, through
factors 1/zi) give a nonzero integral. This suggests a sim
diagrammatic representation for the terms in Eq.~55!, as
given by Eq.~57!. On a one-dimensional lattice containingn
sites, with lattice spacingDT, draw m vertices at the loca-
tions l 1 ,l 2 , . . . ,l m . Connect the vertices by lines in all po
sible ways~summing over these different possibilities! sub-
ject to the constraint that each vertex is connected to an
number of lines. Associate a factorA2p(p22)!! ~coming
from evaluating the Gaussian integrals! with each vertex of
orderp, a factor (2Cl i l j

) r /r ! with the r lines connecting site

l i to site l j , and an overall factor (p i )2m with the diagram.
This suffices to evaluate the integrals in Eq.~57!. Evaluating
the summations in Eq.~55! involves enumerating all con
figurations of the vertices on the lattice for a given order
of the points, and noting that the factorCl i l j

associated with

a given line is equal toC(qDT), whereq5u l i2 l j u is the
length of the line in units ofDT.

We choose to defineC(DT) as first order small and
C(qDT) as qth order small. Although somewhat arbitrar
this is a largeDT expansion and most processes of physi
interest have correlatorsC(qDT) which decrease exponen
tially for large argument, so our definition is consistent f
large DT. For the random walk, the correlator isC(T)
5e2T/2 and the definition is always valid. For other pr
cesses it is often possible to reexpand the correlator in te
of an exponential and work to a given order~in practice we
can go up to 14th order! in this exponential. This can be don
for, e.g., the random acceleration problem. The order o
diagram is then equal to the total length of its lines~mea-
sured in units of the lattice spacingDT). Thus to a given

FIG. 7. All topologically distinct contributions tôs is jsks l&
up to fourth order. Note that the first, fifth, and sixth diagrams
disconnected, while the others~including diagrams 2 and 3! are
connected~due to the constraint that the order of the pointsi , j ,k,l
must be unchanged!.
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order k, we need only evaluate correlations functions w
separations up to 2kDT.

To illustrate this approach, we show in Fig. 7 all the t
pologically distinct diagrams contributing tôs is jsks l& up
to fourth order. The first diagram, when enumerated on
lattice, will be second order or greater, while the remain
five will be fourth order or greater.

In Fig. 8 are shown the enumerations of two of the ba
diagrams of Fig. 7 together with their embedding factors~the
number of ways they can be placed on the lattice!, up to fifth
order.

Thus the calculation ofPn proceeds in three stages:
~1! All the basic diagrams up to the required order a

found, for example, the 4-vertex diagrams shown in Fig.
~2! The basic diagrams are enumerated on the lattice,

cluding the ‘‘stretched’’ diagrams, as shown in Fig. 8.
~3! The appropriate factors are assigned to each diagr
The total number of enumerated diagrams increa

roughly by a factor of 2 for each extra order. At 14th ord
there are 12434 diagrams. Memory and, to a lesser ex
time constraints limited us to this order. There is, howev
no new difficulty in going to higher order. The process w
automated usingMATHEMATICA . For calculatingPn , finding
the basic diagrams was the most challenging task in term
computer time and memory. To achieve 14th order we u
the fact that all disconnected diagrams can be constructe
combining two or more connected diagrams. At 14th ord
diagrams with 12 or more vertices are disconnected, t
only connected diagrams with up to 10 vertices need
found. Furthermore, diagrams containing two or more lin
connecting the same points can be constructed from
grams with only 0 or 1 lines connecting points by addi
pairs of lines. The procedure adopted was as follows.

For the 2 to 10-vertex diagrams all possible diagrams
to 14th order with only 0 or 1 lines connecting pointsandall
vertices odd are constructed. To these diagrams pairs of l
are added in all possible ways up to 14th order. The c
nected diagrams are then selected and stored.

For 2- to 28-vertex diagrams all diagrams are construc
by combining the connected diagrams found above, for
ample, the 6-vertex diagrams are formed from three 2-ve
diagrams, one 2-vertex diagram, one 4-vertex diagram,
one 6-vertex diagram~with the appropriate permutation fac
tors arising from the various ways of ordering the connec
diagrams!. For large vertex numbers, this produces sign
cant savings over naively trying all diagrams~since the vast
majority of diagrams do not satisfy the odd-vertex criterio!.
In this way, up to orderk we need only find all connecte
diagrams with up toq vertices, whereq5(2k14)/3 is even
and we round down, whilst the diagrams go up to 2k verti-
ces.

e

all dots
FIG. 8. Enumeration of two of the diagrams from Fig. 7, with embedding factors, up to fifth order. Large dots are vertices, sm
intermediate sites. The final diagram here gives a contribution (n24)(2/p2)C(2DT)C(DT)3 to Pn .
6-10
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PERSISTENCE EXPONENTS AND THE STATISTICS OF . . . PHYSICAL REVIEW E 69, 016106 ~2004!
Having foundPn , we findr(5e2uDT) using the fact that
Pn;rn for large n. Thus r is formally obtained asr
5 lim

n→`
Pn11 /Pn . However, since we started in the st

tionary state, the relationr5Pn11 /Pn in fact holds for alln
larger than the length of the longest diagram. Expanding
expression forPn11 /Pn as a Taylor series up to 14th order
a5e2DT/2 gives us a series expansion forr(a) about DT
5` (a50). For the random walk, for example,C(DT)
5e2DT/25a for m51/2, substituting this into our expressio
for r gives us a series up to 14th order ina whose coeffi-
cients agree with those of the matrix method~to within the
numerical error of the matrix method!.

For the usual random acceleration problem,C(DT)
5(3e2DT/22e23DT/2)/25(3a2a3)/2. For this case our
identification of C(14DT) as being of the same order a
C(DT)14 does not hold for allDT. However, if we only keep
terms up toa14 our expansion will be exact up to order 14
a. Whenever possible, this is what we will always do. No
that in this way we are now working strictly to 14th orde
even thoughC( j DT)ÞC(DT) j .

In Ref. @23# we introduced the concept of alternating pe
sistence, withPn

A being the probability thatXi is positive for
odd i and negative for eveni ~or vice versa!. We findrA by
noting that, whereas before we requiredX1 ,X2 , . . . ,Xn
.0, we now requireX1 ,2X2 ,X3 ,2X4 , . . . ,Xn.0. Thus
the calculation is as before except thatC(qDT)→
2C(qDT) for q odd. Making this minor change to the no
mal persistence result gives us the alternating persistenc
ponent. This way of accounting for sign changes betw
Xi , Xj will be used below to calculate the distribution
crossings.

We have applied the correlator expansion to the rand
walk ẋ5h(t) and random accelerationẍ5h(t) using the
transformation to logarithmic time to generate the cor
sponding stationary processes. Furthermore, we have stu
diffusion from random initial conditions in one to three d
mensions,]f/]t5¹2f, wheref(x,t) is the diffusion field
and the initial conditionf(x,0) is delta-correlated Gaussia
noise. We consider the persistence off at a single site, for
example,f(0,t). For this process the correlator is

C~T!5sechd/2~T/2!, ~58!

whered is the space dimension. As for the random accele
tion, we define a5exp(2DT/2) for d52 and a5exp
(2DT/4) for d51,3 and then expand the correlator in powe
of a. For d51,2 the lowest power ofa is a1 and so we
expand up toa14 whilst for d53 the lowest power isa3 and
so we expand up toa42. We also considered the process
dnx/dtn5h(t) for n.3. In logarithmic time the correlator
are @20#

Cn~T!5~221/n!e2T/2
2F1~1,12n;11n;e2T!, ~59!

where 2F1 is the standard hypergeometric function. Then
51,2 cases are the random walk and random accelera
whilst the limit n→` case reproduces the correlator for t
d52 diffusion process mentioned above@20#.
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For all these problems we define a discrete persiste
exponent,uD(a)52 lnr(a)/DT5lnr(a)/2lna, and plotuD(a)
againsta for 0<a<1, i.e., `>DT>0. Since we are plot-
ting finite series in powers ofa, they do not converge fora
→1. This problem is exacerbated by the 1/lna term in the
definition of uD(a), which causesuD(1) to blow up unless
r(1)51. To maker and henceuD(a) more accurate fora
close to 1 we extrapolateuD(a) to the continuum. To do this
we use the technique of Pade´ approximants borrowed from
the field of series expansions for critical phenomena@27#.
The Pade´ approximant involves replacing the 14th order s
ries in a with a fraction whose numerator and denomina
are series ina. The sum of the order of these two series is
and the coefficients are chosen so that when the fractio
expanded as a series ina it is identical to the raw series. Thi
approach markedly improves the results forr. For example,
for the random walk, the Pade´ approximant of the 14th orde
series appears to better the 25th order raw series obta
from the matrix method~both raw series agree, of course, u
to 14th order!. However, in order to get accurate continuu
results foru we add 1 further term to the Pade´ approximant
~either numerator or denominator! whose coefficient is cho-
sen so that the exact constraintr(1)51 is satisfied. This
serves to give reasonably accurate estimates of the
tinuum persistence exponent. For example, for the rand
acceleration problem we findu50.2506(5) from the Pade´
approach, compared to the exact result of 1/4.

For certain sufficiently smooth processes the derivative
uD(DT) at DT50 is zero@24#. We can thus add a furthe
term to the Pade´ approximant to impose this constraint, an
markedly improve the accuracy of our estimate of the c
tinuum u. The diffusion equation in all dimensions and th
dnx/dtn5h(t) processes forn>3 are all suitable. Table I
shows the continuum results for diffusion in one to thr
dimensions as reported in Ref.@25#, with numerical results
and also the singly constrained and IIA results for compa
son. Ford51 the IIA is slightly better, but the correlato
expansion is more accurate ford52, 3. Furthermore, we
obtain estimates of the errors and, by going to higher or
we may improve our results. Table II shows the continuu
results for thednx/dtn5h(t) processes with 3<n<10. Fig-
ure 9 shows howun varies withn. Notice in particular that
un2u`}1/n for n.20, and thatu` is identical to that of 2D
diffusion ~since the correlators are identical!.

And so, by the use of these two constraints we have b
able to extend a series expansion aboutDT5` all the way to

TABLE I. Results for the continuum persistence exponentu for
the random acceleration problem and the diffusion equation in
to three dimensions. Pade´1CR is the Pade´ approximant results with
one constraint, Pade´2CR has two constraints. Numerical@13# and
IIA results are shown for comparison.

Padé1CR Pade´2CR Numerical IIA

ẍ 0.2506~5! 1/4 ~exact! 0.2647

1D diff 0.119~1! 0.1201~3! 0.12050~5! 0.1203
2D diff 0.187~1! 0.1875~1! 0.1875~1! 0.1862
3D diff 0.24~3! 0.237~1! 0.2382~1! 0.2358
6-11
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theDT→0 limit. The ability to do this does however depen
on the correlator. First, if the process is ‘‘rough,’’ i.e.,
2C(T)}Tb1••• with 0,b,2, so that the probability dis
tribution of the timeT between two zero crossings behav
as P1(T)}Ta1•••, with a,0, then we have shown@24#
that u(0)2u(DT);DT11a for small T. For the random
walk, for example,a521/2 and so we get a square ro
cusp in uD(DT) for DT→0 which the series expansio
aboutDT5` cannot reproduce. Consider processes suc

]h

]t
52~2¹2!z/2h1h~ t ! ~60!

TABLE II. Results forun againstn for small n. The Pade´ ap-
proximant correlator expansion with two constraints is shown al
with the independent interval approximation. The Pade´ results are
an average of suitable Pade´s of order 14 to 10. Note that forn52
~the random acceleration problem!, the IIA givesu50.2647 while
the analytical result is 1/4. Forn→` ~the diffusion equation!, the
Padéresult with two constraints is 0.1875~1!, the numerical result is
0.1875~1!, and the IIA result is 0.1862.

n Padé2CR IIA

3 0.22022~3! 0.22283
4 0.20958~3! 0.21029
5 0.20413~3! 0.20417
6 0.20084~3! 0.20054
7 0.19864~3! 0.19813
8 0.19707~3! 0.19642
9 0.19589~3! 0.19514

10 0.19496~3! 0.19414

FIG. 9. Plot ofun againstn for small n. Then51,2 results are
omitted as they are known analytically to be 1/2 and 1/4, resp
tively, and only one constraint may be imposed on the Pade´ approx-
imant in these cases. Note thatun goes to the continuum result o
0.1875~1! ~solid line! rather slowly, in fact as 1/n, see inset. The
results were obtained using Pade´ approximants with two con-
straints, an average being taken of suitable Pade´ approximants of
order 14 to 10. Inset: plot ofun against 1/n showing thatun2u`

}1/n for n.20.
01610
as

describing linear interface growth, whereh(x,t) is delta cor-
related in space and time. The normalized autocorrela
function of h(x,t) has, ford,z, the form

C~T!5cosh~T/2!2b2usinh~T/2!u2b512uT/2u2b1•••,
~61!

whereT5 lnt as usual,b5(1/2)(12d/z) andd is the spatial
dimension@28#. Since b,1/2 this process will always be
‘‘rough,’’ so extrapolation of the series to the continuu
limit is not possible. Second, the correlator may not be ea
expandable in some suitable variable such as thee2DT/2 used
earlier. Another process, fractional Brownian motion, defin
as a Gaussian processx(t) with stationary increments
^@x(t)2x(t8)#2&}ut2t8u2b, has normalized correlator@29#

C~T!5cosh~bT!2
1

2
U2 sinhS T

2
D U2b

, ~62!

whereT5 lnt as usual. For generalb there are two incom-
mensurate variablese2bDT ande2DT/2, making it difficult to
construct a controlled expansion.

Finally, when applying the two constraints to the thre
dimensional diffusion problem, we have been unable to
merically solve the 44 simultaneous nonlinear equations
quired to construct the expansion toO(a42). Thus we have
only gone up toa29 in this problem. This is not however a
insuperable difficulty.

Note however that, even when we cannot get continu
results, forDT large the expansion will always work, as ju
substituting in the raw correlator is good enough.

Having introduced the correlator expansion for the cal
lation of persistence exponents, in the following sections
will extend it to calculate properties of the occupation-tim
and crossing-number distributions.

VII. OCCUPATION-TIME DISTRIBUTION

The occupation-time distribution, considered for the co
tinuous case in Refs.@9–11#, is the probability distribution
R„t(T)…, where

t~T!5
1

T
E

0

T

dT8Q„X~T8!… ~63!

and Q(X) is the Heaviside step function. For a symmet
distribution of zero mean,RT(t) is symmetric aboutt
51/2. ThenRT(0) andRT(1) give the persistence probabi
ity P(T) introduced earlier. The discrete-sampling equiv
lent, Rn,s , is the probability thatX(T) has been found to be
positive at exactlys out of then samplings. Thus,

s~n!/n5r ~n!5
1

n
(
i 51

n

Q„X~ iDT!…. ~64!

Writing Q„X( iDT)…5(11s i)/2, wheres i[sgn@X( iDT)#,
we get

^r ~n!&5 1
2 ~65!

g

c-
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and

^r ~n!2&5
1

4
1

1

2pn2(i 51

n

(
j 51

n

sin21@C~ u i 2 j uDT!#, ~66!

where we have used the result that^s is j&5(2/p)sin21@C(ui
2juDT)#. If we choose as before to work to a given order
the correlator, we need only evaluate the sum up to
order. Taking the largen limit, we can change the sum to

^r ~n!2&5
1

4
1

1

4n
1

1

pn
(
k51

o

sin21@C~kDT!#, ~67!

whereo is the order to which we wish to work. It has bee
pointed out@16# that for n large, the widely separated~in
time! parts of the time series become uncorrelated and,
lowing the central limit theorem,Rn,s is Gaussian fors close
to 1/2 with standard deviation given by Eq.~67!. We will use
this as a check of our final result forRn,s .

To find Rn,s we must sum over all ‘‘paths’’ involvings
positive samplings~and n2s negative ones!. So the prob-
ability, Rn,s to find s positive values fromn samplings is

Rn,s5 K d2s2n,(
i

s i L
5K 1

2n (
$e i561%

d2s2n,(
i

e i)i 51

n

~11e is i !L , ~68!

where the variablese i specify a particular ‘‘path’’ of positive
and negative samplings:e i511 (21) specifies a path tha
is positive ~negative! at time iDT. da,b is the Kronecker
delta function which we choose to write in analytic form as
Cauchy integral

da,b5
1

2p i
R dz

za2b11
, ~69!

where the integration contour encircles the origin. Substi
ing this into Eq.~68! gives

Rn,s5
1

2p i
R dz

z2s2n11 K 1

2n (
$e i561%

)
i 51

n

ze i~11e is i !L .

~70!

Summing over thee i ’s gives

Rn,s5
1

2p i
R dz

z2s2n11 S 11z2

z
D nK 1

2n)i 51

n S 11
z221

z211
s i D L .

~71!

The term which is averaged over is identical to that of
normal persistence calculation apart from the factorz2

21)/(z211) associated with eachs i . Making this minor
change to the previous calculation of persistence gives
term Ỹn(z) where before we hadrn, and soỸ(`)5r. Re-
placing s by rn where 0<r<1 and anticipating thatRn,s
01610
at
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a

;@r(r)#n for n large gives us an expression forr(r ) which
we can evaluate by steepest descents:

@r~r !#n5
1

2p i
R dt

2t
exp@n$ ln~11t !2r lnt1 lnY~ t !#%,

~72!

where we have replacedz2 by t, and Y(t)5Ỹ(At). As a
simple check, at zeroth orderY is 1/2 and the method o
steepest descents gives a saddle-point valuets

(0)5r /(12r ),
and

Rn,s;
1

2n
exp$2n@r lnr 1~12r !ln~12r !#%. ~73!

This is the same as the combinatorial result,

Rn,s5
1

2n S n
rn D ~74!

when expanded to leading order for largen using Stirling’s
formula. Note that there is hence also aAn term in Rn,s
which we ignore relative to the exponential forn→`.

We use the method of steepest descents in the follow
way. Having found the positionts

(0) of the saddle point to
zeroth order, we substitute it into the right-hand side of
general saddle-point equation

ts5
r

12r
2

ts~11ts!

12r
Y8~ ts!, ~75!

whereY8(t)[dY/dt, and thus findts to first order, and so
on recursively up to tenth order. Substitutingts into the ex-
ponent of Eq.~72! gives an analytic expression forRn,s in
the largen limit and hencer(r ). Just as in the expression fo
persistence, the expression forr(r ) is rather long and it was
only possible to findr(r ) analytically to tenth order.

As stated in the preceding section, forr close to ^r &
51/2, r(r ) approximates to a Gaussian distribution,

r~r !}expF2
1

2n

~r 2^r &!2

^r 2&2^r &2G . ~76!

Thus one expects that the quantity lim
r→^r &

(r 2^r &)2/

@22nln r(r)# should equal the variance ofr calculated pre-
viously, and indeed these two quantities agree term by t
to tenth order, providing a useful cross-check.

We apply our result to the random walk, random accele
tion, and diffusion from random initial conditions in one t
three dimensions. We recall thatRn,s is the probability forn
measurements ofX to return s positive values. We have
shown that forn→`, s→` with r 5s/n fixed it has the
form Rn,s;@r(r )#n, which can be written in the alternativ
form Rn,s;exp@2uD(r)T#, whereT5nDT as usual anduD
52 ln r(r)/DT.

Plots of uD(r ) againstr for various values ofDT are
shown in Fig. 11. For the diffusion equation we are able
6-13
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apply the approximant to Pade´ the series and apply two con
straints, giving us good estimates for the continuumu(r ),
i.e., the limiting value ofuD(r ) asDT→0. Plots ofu(r ) are
also shown in Fig. 10. The second constraint, t
du(r )/dDTuDT5050 for sufficiently smooth processes~in-
cluding diffusion!, comes from a similar argument to th
given earlier @24# for standard persistence: asDT is in-
creased from zero, the first correction tou comes from the
contribution of a path that is the same as a contributing p
in the continuum, apart from one undetected double cros
which ~to lowest order inDT) gives a correction tou of
orderDT2 and thusdu(r )/dDTuDT5050.

The functionu(r ) is the large-deviation function for th
occupation-time distribution. Close tor 5^r &51/2, it is qua-
dratic in r 2^r &. The probability distributionPr(r ) of r is
given by Pr(r )}@r(r )#n5exp@2(1/2)(r 2^r &)2/(^r 2&
2^r &2)# for r near^r &. This means that the typical fluctua
tions inr around the mean are of ordern21/2 for largen since
the variance is proportional to 1/n. The full functionu(r ) is
required to determine the probability of large deviations fro
the mean, where the fluctuations are non-Gaussian.

We end this section by noting that the full large deviati
functionuD(r ) associated with the occupation-time distrib
tion was computed analytically@18# for the intrinsically dis-
crete process

c i5cos~v!f i1sin~v!f i 21 , ~77!

where thef i are independently distributed Gaussian rand
variables. This process appears as a limiting case of the
fusion equation on a hierarchical lattice@30# and also appear
in the one-dimensional Ising spin glass problem@18,31#. Ex-
act results were obtained for the casev5p/4. Interestingly,
these results turn out to be independent of the distributio

FIG. 10. Plot of the continuum large deviation functionu(r )
againstr for the diffusion equation in one, two, and three dime
sions ~bottom to top, respectively!. u(r ) is symmetric aboutr
51/2. The results were obtained using Pade´ approximants with two
constraints, an average being taken of suitable Pade´ approximants
of order 10 to 7 for one and two dimensions and of order 7 to 6
three dimensions.
01610
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f i provided that it is symmetric. We have also obtained
the large deviation function forv5p/4 by the correlator
method. The comparison with the exact results is shown
Fig. 11.

VIII. OCCUPATION-TIME PARTIAL SURVIVAL

Here we consider the discrete occupation-time part
survival probability,Rn(p). Let us suppose that the proce
‘‘dies’’ with probability 12p wheneverX is sampled to be
positive. ThenRn(p) is defined to be the probability of th
process survivingn samplings if the variableXi survives
being sampled as positive with probabilityp. Samplings as
negative are always survived. Thus,

Rn~p!5(
s50

n

psRn,s ~78!

and soRn(p) is also the generating function forRn,s since

Rn,s5
1

s!

ds

dpsU
p50

Rn~p! ~79!

or alternatively

Rn,s5 R dp

ps11
Rn~p!. ~80!

Also, writing ps as exp(s ln p) and expanding the exponen
tials gives

ln r r~p!5(
j 51

`
ln pj

j !
^sj&c , ~81!

where^sj&c is the j th cumulant of the occupation time,s, and
we have usedRn(p)5@r(p)#n, which, as for persistence
~but unlike Rn,s) is true for anyn provided thatn is larger
than the largest diagram involved in the evaluation ofRn(p).
Thus calculatingRn(p) gives us another method for findin
the moments of the number of crossings and alsoRn,s al-
though the evaluation ofRn,s by the contour integration is
entirely equivalent to the previous method and differentiat
Rn(p)s (5rn) times becomes unfeasible for largen.

Rn(p) is found in a similar way to before, by summin
over all possible ‘‘paths,’’

Rn~p!5K 1

2n (
e i561

)
i 51

n H p~11s i !, e i51

~12s i !, e i521J L ,

~82!

wheres i5sgn(Xi) as usual, and the average is over the va
ablesXi ( i 51, . . . ,n). Thus we get

Rn~p!5K 1

2n
~p11!n)

i 51

n S 11
p21

p11
s i D L , ~83!

which is the same as the calculation for normal persiste
except that we include a factor (p21)/(p11) with eachs i

r
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FIG. 11. Plots ofuD(r ) againstr with exp(2DT/2)51/2, 1/4, 1/8, 1/16, 1/256, and 1/240 ~top to bottom, respectively! for the following
processes. The random walk~top left!. The random acceleration problem~top right!. Diffusion in one dimension. The exp(2DT/2)51/2
curve is not shown as the raw series had not converged at tenth order. Also shown are the results for the continuum limit from Fig. 1~middle
left!. Diffusion in two dimensions. Also shown are the results for the continuum limit from Fig. 10~middle right!. Diffusion in three
dimensions. The exp(2DT/2)51/2 curve is not shown as the raw series had not converged at tenth order. Also shown are the result
continuum limit from Fig. 10~bottom left!. The intrinsically discrete processc i5(f i1f i 21)/A2 where thef i ’s are independent identically
distributed symmetric random variables. The exact result@18# ~solid line! is also shown. The curves differ by a maximum of 0.005 75. N
that there is noDT dependence in this case. The curves were evaluated to 10th order in the raw series, i.e., in powers of exp(2DT/2) except
for diffusion in three dimensions where it is exp(23DT/2) and the intrinsically discrete case where the correlator itself is used. Note th
all casesr 50,1 corresponds to ordinary discrete persistence and that the curves are symmetric aboutr 51/2 ~bottom right!.
016106-15
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and an overall factor (p11)n. Thus we can findr(p)
5exp@2u(p)# to order 14. This is done and results for diffu
sion in one to three dimensions are shown in Fig. 12. N
that, forDT→0, a positive excursion by the underlying co
tinuous process will survive with zero probability since t
number of samplings tends tò. Thusu(p)uDT50 is just the
continuum persistence exponent. It is therefore possibl
improveu(p) for DT small by applyingu(p)uDT505u as a
constraint, in addition to the standard constraintr(p)uDT50
51.

A further check is provided by usingr(p) to generate the
first two cumulants. The results agree term by term to te
order with the method used to calculate the mean~trivially !
and the variance.

We next compare the results obtained by the correla
method to an exactly solvable case, namely, the discrete
cess in Eq.~77! for v5p/4. In this case, an exact expressi
of the exponentu(p) is known @18#,

u~p!5
~12p!

2tan21S 12p

11p
D . ~84!

A comparison of this exact result with the one obtained
the correlator method is shown in Fig. 13.

In the last two sections we have examined the occupat
time statistics. The occupation time depends only on
signs ofX( iDT) at eachi, that is, it is local. This meant tha
we merely had to attach additional factors to each lo
X( iDT). In the next sections we will be studying the numb
of crossings, so we must consider the signs of bothX( iDT)
andX„( i 11)DT…. Thus the problem is not local in the sen
used above and we cannot just attach additional factor
eachX( iDT). The solution, as explained in the followin
section, is to attach additional factors to the lines connec
two X’s in the diagrammatic notation.

IX. DISTRIBUTION OF CROSSINGS

We now apply the correlator expansion to calculate
distribution of crossings of an arbitrary GSP. We start fro
the calculation of the persistence. The method is the sam
until we assign factors to the diagrams on the lattice.
wish to calculate the probability ofm detected crossings inn
samplings,Pn,m , rather than just the probability of no cros
ings which was the persistence calculation. To do this,
sum over all the possible ways in which thosem crossings
could occur. Furthermore, we note that if we have a line i
diagram connecting two vertices, ands crossings occur be
tween these two vertices, then the factorC( j DT) associated
with it from the persistence calculation should also hav
factor (21)s associated with it. Consider the diagram sho
in Fig. 14.

Besides the enumerations done for the persistence ca
lation we must consider the following four cases.

~1! No crossings occur on the sites where the diagram
placed. This would occur with probability
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FIG. 12. Plots ofuD(p) against exp(2DT/2) with p50, 1/4,
1/2, 5/8, 3/4, and 7/8~from the top, respectively!. uD(p) has been
constrained to give the persistence result at the continuum.
curves are produced from averages of suitable constrained́
approximants, although in practice the various Pade´ approximants
are indistinguishable. Top, diffusion in one dimension. Middle, d
fusion in two dimensions. Bottom, diffusion in three dimensions
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~n2m21!~n2m22!

~n21!~n22!
~85!

and there are no sign changes.
~2! There is one crossing between the first and sec

vertices. This occurs with probability

m~n2m21!

~n21!~n22!
~86!

and there is a factor (21)3 associated with it.
~3! There is one crossing between the third and fou

vertices. The probability of this occurring is as above a
there is a factor~21! associated with it.

~4! There is one crossing between the first and sec
vertices and one crossing between the third and fourth v
ces. This occurs with probability

m~m21!

~n21!~n22!
~87!

and there is a factor (21)3(21) associated with it. Hence
this diagram has an additional factor

~n2m21!~n2m22!22m~n2m21!1m~m21!

~n21!~n22!
~88!

over and above that for the persistence calculation. Furt
more, there is an overall factor

FIG. 13. Plot of uD(p) against p for the processc i5(f i

1f i 21)/A2. The exact~solid line! and raw correlator expansio
~dotted line! results are shown, the two curves being indistingui
able except nearp50.

FIG. 14. A fourth order diagram.
01610
d
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S n21
m D ~89!

accounting for all the ways in which them crossings can
occur on the whole lattice. Note that, although we use
term ‘‘probability,’’ when run over the whole lattice@multi-
plied by the factors (n22)(n23)/2!] each probability be-
comes the exact number of ways in which the correspond
event occurs. Thus by introducing these extra rules w
enumerating the diagrams on the lattice we are able to
culatePn,m , the probability of exactlym detected crossings
occurring in n samplings. Forn large we expect that, a
usual,

Pn,m;rm
n , ~90!

and so we findrm as

rm5 lim
n→`

Pn11,m1m/n

Pn,m

. ~91!

This has been done although due to the additional fac
it was possible only to go to tenth order due to memo
constraints. It has been checked that the result agrees ter
term with the normal persistence calculation form50 and
with alternating persistence form5n. Figure 15 showsr(r )
againstr wherern5m for various values of exp(2DT/2) for
the random walk, random acceleration, and diffusion in o
to three dimensions. Notice that, forr 5^r &51/2
2(1/p)sin21C(DT), r(r )51. Close to this point,r(r ) ap-
proximates to a Gaussian distribution,

r~r !}e2[( r 2^r &)2/2(^r 2&2^r &2)] , ~92!

where the variancêr 2&2^r &2 agrees term-by-term with the
calculation in the following section. Remember that there
a next-to-leading term~preexponential factor!, An in Pn,m ,
as can be seen from considering theDT5` ~lowest order!
case:

Pn,m5
1

2n S n21
m D'A 2

pn
S 1

2

1

~12r !12r r r D n

. ~93!

Note that we are considering the number of detec
crossings per sampling~0 or 1!. As DT→0 the fraction of
~detected! crossings will go to zero. Because of this,u(r )
→` for DT→0 except for ther 50 case which is just stan
dard persistence. As always, 0<r(r )<1, and we choose to
plot r(r ) rather thanu(r ). We have not applied any con
straints to the series.

Recently one of us@5# calculated the distribution of cross
ings and partial-survival probability of the intrinsically dis
crete processc i given by Eq.~77! for the special casev
5p/4. The correlator of the process is

C~ i 2 j !5d i , j1cosv sinv~d i , j 211d i , j 11!. ~94!

Substituting this into the correlator expansion gives the re
shown in Fig. 16 for comparison with the analytic result. T

-
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FIG. 15. Plots ofr(r ) againstr with exp(2DT/2) increasing from 0~top right of each figure! in steps of 1/10. Top left, the random wal
with exp(2DT/2)50 to 8/10. Top right, the random acceleration process with exp(2DT/2)50 to 7/10. Middle left, diffusion in one
dimension with exp(2DT/2)50 to 6/10. Middle right, diffusion in two dimensions with exp(2DT/2)50 to 7/10. Bottom, diffusion in three
dimensions with exp(2DT/2)50 to 3/10. Note thatr(r ) is 1 at the mean value ofr given by^r &51/22sin21@C(DT)#/p. The plots are of
the raw series.
016106-18
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agreement is good forr small but forr *0.73 the series ha
not yet converged by tenth order. This shows up in the w
thatr(r ) changes as the order is increased from 1 to 10.
r small there is oscillatory convergence whilst forr large the
convergence is monotonic or, forr *0.73, has not occurred
The fact that convergence does not occur forr large is pre-
sumably because the series is less good for large numbe
crossings. This also occurs, for example, for the random
celeration problem where the alternating persistence (r 51)
result converges more slowly than the standard persiste
(r 50) result. That it fails so badly whilst the smallr result is
acceptable is surprising. Nevertheless, by checking whe
or not the series converges as the order is increased to 10
can tell whether the result is reliable. For the casev
5p/12, for whichC( i 2 j )5d i , j1

1
4 (d i , j 211d i , j 11), the se-

ries has converged for allr although there is no analyti
result for this case. In fact the case studied is the one
which the correlator takes its largest possible value. A
notice that ther(1)50 result is due to the requirement tha
in order thatc i alternate in sign, the magnitude off i must
increase every time step. ThusPn,n decays as 22n/n!, which
is faster than a power ofn, implying r(1)50. For other
values of the coefficients off i andf i 21 this is not the case
and presumablyr(1) is nonzero.

In this section we have calculated the distribution
crossings,Pn,m , to tenth order in the correlator by extendin
the diagrammatic technique. In the following two sectio
we derive the standard deviation of the number of crossi
and then usePn,m to calculateFn(p), the partial survival of
crossings probability.

X. THE VARIANCE OF THE NUMBER OF CROSSINGS

The number of detected crossings inn samplings,m, is
~up to an end effect that is negligible for largen)

FIG. 16. Plot of r(r ) against r for the processc i5(f i

1f i 21)/A2 where thef i ’s are independent identically distribute
symmetric random variables. The solid line is the numerical eva
ation of the exact result and the dashed line is the result of
correlator expansion. The agreement is good untilr;0.73, and be-
comes badly wrong asr→1 ~see text!.
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i 51

n
1

2
~12s is i 11!, ~95!

wheres i5sgn@X( iDT)#. This gives

^r &5
1

2
2

1

p
sin21@C~DT!#, ~96!

as derived in Ref.@26#. One may further attempt to evalua
the variance ofm,

s2/n5~^m2&2^m&2!/n5
1

4n
(
i 51

n

(
j 51

n

~^s is i 11s js j 11&

2^s is i 11&^s js j 11&!, ~97!

which involves calculating the connected 4-vertex diagra
in the correlator expansion. The calculation is essentia
identical to that of Sec. VI apart from the extra cases oi
5 j andi 5 j 61 and the result to 14th order may be read o
Figure 15 showsr(r ) againstr for various processes an
values ofDT. Close tor 5^r &, r(r ) is given by

r~r !;expF2
1

2n

~r 2^r &!2

^r 2&2^r &2G , ~98!

and comparison of (r 2^r &)2/@22n ln r(r)# agrees term by
term to 14th order in the correlator with the direct calculati
of ^r 2&2^r &2, providing a useful cross-check.

The result for̂ r 2&2^r &2 for the random walk also agree
with that of Eq.~20! ~the matrix method!. The variance for
various processes is shown in Fig. 17.

Thus we have found the variance of the number of cro
ings for an arbitrary process to 14th order in the correla

-
e

FIG. 17. Plot ofs2 against exp(2DT/2). The curves are, from
the top right, the linear growth equation~60!, the random walk,
random acceleration, and diffusion in three, two and one dim
sions. The curves are the raw series in powers of exp(2DT/2) to
14th order in the correlator and are plotted only as far as their se
have converged.
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This involved calculating the 4-vertex diagrams only, a
therefore it is entirely feasible to go to higher orders sin
the 4-vertex diagrams are relatively simple. Notice also t
the variance only contains even orders, as one would ex
from the 4-vertex diagrams.

In the following section we complete our calculations
finding the partial-survival probability for an arbitrary GS
this also being the moment generating function. The res
will be shown to agree with those of the current section.

XI. DISTRIBUTION OF CROSSINGS PARTIAL SURVIVAL

As for the specific case of the random walker~Sec. V!, we
may consider the partial-survival probabilityFn(p), the
probability of surviving up to thenth sampling if each de-
tected crossing is survived with probabilityp. As stated in
Sec. V, this is also the generating function forPn,m and the
cumulant generating function@4#:

Fn~p!5 (
m50

n

pmPn,m ~99!

and

ln F~p!5(
j 51

`
~ lnp! j

j !
^r j&c , ~100!

where^r j&c is the j th cumulant. From Eq.~99! it can be seen
thatFn(p) is a sum of terms containing (m

n )mspm wheres is
some positive integer. These can be simply evaluated to
an expression forFn(p) and hencerp . As for the occupation
partial survival,Fn(p)5r(p)n5exp@2u(p)n# for all n even
though this is not true forPn,m .

For rough processes, the continuum partial survival is
same as persistence, since any crossing entails an in
number of crossings and thus nonsurvival. For smooth p
cesses however, calculation ofr(p) and hence that ofu(p)
52 ln@r(p)# is nontrivial. For the random acceleration pro
lem the exact result is Ref.@32#,

u~p!5
1

4
S 12

6

p
sin21

p

2
D , ~101!

while for the intrinsically discrete process@Eq. ~77!# it is @5#

u~p!5 lnS sin21A12p2

A12p2 D . ~102!

Figure 18 shows this result and the raw series result for c
parison.

For general processes we apply the constraint to the s
thatr(p)uDT5051. For sufficiently smooth processes, as b
fore, the first correction tou(p) nearDT50 will be of order
DT2. We apply this additional constraint to the appropria
processes and the corresponding continuum results
shown in Figs. 19 and 20.
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The results from the matrix method partial survival for t
random walk and random acceleration, derived in Sec
agree with those of the correlator expansion term by term
within the numerical precision of the matrix method. Als
using Fn(p) as a generating function, we find that the fir
two cumulants agree term by term to tenth order with
results of Sec. X. We are also able to calculate higher cu

FIG. 18. Plot of u(p) against p for the processc i5(f i

1f i 21)/A2. The solid line is the exact result and the dashed line
the result of the correlator expansion. They differ by a maximum
0.005 76~at p50).

FIG. 19. Plot of u(p) against p for ~top to bottom! the
dnx/dtn5h(t) process withn52 ~random acceleration!, n53, n
54, andn→` ~equivalent to diffusion in two dimensions!. For n
52 ~top curves! the exact result~101! is shown~dashed line! along
with the IIA ~dotted! and the Pade´ approximant with one constrain
~solid line!. For the other cases, the IIA~dotted! and Pade´ approx-
imant with two constraints~solid line! are shown. The correlato
results are an average of suitable Pade´ approximants of order 10 to
7. Note that the IIA is rather inaccurate for the random accelerat
but improves asn increases.
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lants. We have also used the method of steepest descen
calculater(r ) from r(p) as a further cross-check.

This evaluation of the crossing partial survival comple
our calculations.

XII. CONCLUSION

In this paper, we have studied the statistics of s
changes for Gaussian stationary processes sampled on

FIG. 20. Plot ofu(p) againstp for diffusion in one, two and
three dimensions~bottom to top!. The IIA results~dotted! and the
correlator results~solid lines! are plotted. The correlator results a
an average of suitable Pade´ approximants of order 10 to 7 for on
and two dimensions and 6 to 5 for three dimensions.
e

-
b
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discrete time points. Various observables associated with
distribution of crossings have been introduced via the s
plest GSP, namely, the Orstein-Uhlenbeck process, for wh
we were able to compute these quantities to good accu
for most of the range of the time between crossings.
non-Markovian GSPs, it is however hard or impossible
compute the statistics of crossings by this method.

We have therefore extended the correlator expansion
Ref. @25# to calculate properties of both the crossing and
occupation-time distributions in the stationary state. The
pansion in powers of the correlator works well when t
variables are relatively weakly correlated. For stronger c
relations the series expansion does not converge. We
however able, for the case of an underlying continuous
sufficiently smooth process, to extrapolate our results all
way to the continuum by using the Pade´ approximant with
two constraints. Thus even in the continuum we have b
able to calculate the persistence exponents, the occupa
time exponents and the partial survival of crossings ex
nents to high precision. These results compare well w
those of the independent interval approximation, the ot
general method. In most cases they are more accurate,
ever, and they also give an estimate of the error of the re
which the IIA does not. Furthermore, by calculating high
orders the results may be improved. We believe we h
demonstrated convincingly that the correlator expansion
the method of choice for calculating persistence propertie
Gaussian stationary processes.
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